metadata
language: en
thumbnail: null
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- WHAM!
- SepFormer
- Transformer
license: apache-2.0
datasets:
- WHAM!
metrics:
- SI-SNRi
- SDRi
SepFormer trained on WHAM!
This repository provides all the necessary tools to perform audio source separation with a SepFormer model, implemented with SpeechBrain, and pretrained on WHAM! dataset. For a better experience we encourage you to learn more about SpeechBrain. The given model performance is 16.3 dB SI-SNRi on the test set of WHAM! dataset.
Release | Test-Set SI-SNRi | Test-Set SDRi |
---|---|---|
09-03-21 | 16.3 dB | 16.7 dB |
Install SpeechBrain
First of all, please install SpeechBrain with the following command:
pip install \\we hide ! SpeechBrain is still private :p
Please notice that we encourage you to read our tutorials and learn more about SpeechBrain.
Perform source separation on your own audio file
from speechbrain.pretrained import separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-wham")
mix, fs = torchaudio.load("yourspeechbrainpath/samples/audio_samples/test_mixture.wav")
est_sources = model.separate(mix)
est_sources = est_sources / est_sources.max(dim=1, keepdim=True)[0]
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
Referencing SpeechBrain
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
}
Referencing SepFormer
@inproceedings{subakan2021attention,
title={Attention is All You Need in Speech Separation},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}