This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset.

This version of the weights was trained with the following hyperparameters:

  • Epochs: 10 (load from best epoch)
  • Batch size: 128
  • Cutoff length: 512
  • Learning rate: 3e-4
  • Lora r: 16
  • Lora target modules: q_proj, k_proj, v_proj, o_proj

That is:

python finetune.py \
    --base_model='decapoda-research/llama-7b-hf' \
    --num_epochs=10 \
    --cutoff_len=512 \
    --group_by_length \
    --output_dir='./lora-alpaca-512-qkvo' \
    --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
    --lora_r=16 \
    --micro_batch_size=8

Instructions for running it can be found at https://github.com/tloen/alpaca-lora.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train spelt/alpaca-lora-7b