spycoder's picture
yay
13b148c verified
|
raw
history blame
2.52 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-beans
    results: []

vit-base-beans

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the ahishamm/HAM_db_enhanced_balanced_reduced_50_20_20_50 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5305
  • Accuracy: 0.8451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0791 0.2304 100 1.0348 0.6335
0.9415 0.4608 200 0.9576 0.6449
0.7839 0.6912 300 0.8963 0.6662
0.7181 0.9217 400 0.8479 0.6963
0.3995 1.1521 500 0.7821 0.7170
0.5025 1.3825 600 0.6300 0.7837
0.4985 1.6129 700 0.7059 0.7490
0.4388 1.8433 800 0.5893 0.7857
0.2389 2.0737 900 0.5929 0.8077
0.2767 2.3041 1000 0.5795 0.8091
0.2387 2.5346 1100 0.6100 0.8091
0.1691 2.7650 1200 0.6175 0.8071
0.1738 2.9954 1300 0.5877 0.8198
0.0397 3.2258 1400 0.5766 0.8358
0.03 3.4562 1500 0.5681 0.8371
0.092 3.6866 1600 0.5305 0.8451
0.0416 3.9171 1700 0.5443 0.8471

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1