metadata
license: apache-2.0
datasets:
- squarelike/sharegpt_deepl_ko_translation
language:
- en
- ko
pipeline_tag: translation
Gugugo-koen-7B-V1.1
Detail repo: https://github.com/jwj7140/Gugugo
Base Model: Llama-2-ko-7b
Training Dataset: sharegpt_deepl_ko_translation.
I trained with 1x A6000 GPUs for 90 hours.
Prompt Template
KO->EN
### νκ΅μ΄: {sentence}</λ>
### μμ΄:
EN->KO
### μμ΄: {sentence}</λ>
### νκ΅μ΄:
There are GPTQ, AWQ, and GGUF support.
https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GPTQ
https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-AWQ
https://huggingface.co/squarelike/Gugugo-koen-7B-V1.1-GGUF
Implementation Code
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
import torch
repo = "squarelike/Gugugo-koen-7B-V1.1"
model = AutoModelForCausalLM.from_pretrained(
repo,
load_in_4bit=True
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = [stop for stop in stops]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
stop_words_ids = torch.tensor([[829, 45107, 29958], [1533, 45107, 29958], [829, 45107, 29958], [21106, 45107, 29958]]).to("cuda")
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def gen(lan="en", x=""):
if (lan == "ko"):
prompt = f"### νκ΅μ΄: {x}</λ>\n### μμ΄:"
else:
prompt = f"### μμ΄: {x}</λ>\n### νκ΅μ΄:"
gened = model.generate(
**tokenizer(
prompt,
return_tensors='pt',
return_token_type_ids=False
).to("cuda"),
max_new_tokens=2000,
temperature=0.3,
# no_repeat_ngram_size=5,
num_beams=5,
stopping_criteria=stopping_criteria
)
return tokenizer.decode(gened[0][1:]).replace(prompt+" ", "").replace("</λ>", "")
print(gen(lan="en", x="Hello, world!"))