|
--- |
|
license: apache-2.0 |
|
language: en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- squad_v2 |
|
model-index: |
|
- name: albert-base-v2-squad_v2 |
|
results: |
|
- task: |
|
name: Question Answering |
|
type: question-answering |
|
dataset: |
|
type: squad_v2 |
|
name: The Stanford Question Answering Dataset |
|
args: en |
|
metrics: |
|
- type: eval_exact |
|
value: 78.8175 |
|
- type: eval_f1 |
|
value: 81.9984 |
|
- type: eval_HasAns_exact |
|
value: 75.3374 |
|
- type: eval_HasAns_f1 |
|
value: 81.7083 |
|
- type: eval_NoAns_exact |
|
value: 82.2876 |
|
- type: eval_NoAns_f1 |
|
value: 82.2876 |
|
--- |
|
|
|
# albert-base-v2-squad_v2 |
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad_v2 dataset. |
|
|
|
## Model description |
|
|
|
This model is fine-tuned on the extractive question answering task -- The Stanford Question Answering Dataset -- [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/). |
|
|
|
For convenience this model is prepared to be used with the frameworks `PyTorch`, `Tensorflow` and `ONNX`. |
|
|
|
## Intended uses & limitations |
|
|
|
This model can handle mismatched question-context pairs. Make sure to specify `handle_impossible_answer=True` when using `QuestionAnsweringPipeline`. |
|
|
|
__Example usage:__ |
|
|
|
```python |
|
>>> from transformers import AutoModelForQuestionAnswering, AutoTokenizer, QuestionAnsweringPipeline |
|
>>> model = AutoModelForQuestionAnswering.from_pretrained("squirro/albert-base-v2-squad_v2") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("squirro/albert-base-v2-squad_v2") |
|
>>> qa_model = QuestionAnsweringPipeline(model, tokenizer) |
|
>>> qa_model( |
|
>>> question="What's your name?", |
|
>>> context="My name is Clara and I live in Berkeley.", |
|
>>> handle_impossible_answer=True # important! |
|
>>> ) |
|
{'score': 0.9027367830276489, 'start': 11, 'end': 16, 'answer': 'Clara'} |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
Training and evaluation was done on [SQuAD2.0](https://huggingface.co/datasets/squad_v2). |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: tpu |
|
- num_devices: 8 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| key | value | |
|
|:-------------------------|--------------:| |
|
| epoch | 3 | |
|
| eval_HasAns_exact | 75.3374 | |
|
| eval_HasAns_f1 | 81.7083 | |
|
| eval_HasAns_total | 5928 | |
|
| eval_NoAns_exact | 82.2876 | |
|
| eval_NoAns_f1 | 82.2876 | |
|
| eval_NoAns_total | 5945 | |
|
| eval_best_exact | 78.8175 | |
|
| eval_best_exact_thresh | 0 | |
|
| eval_best_f1 | 81.9984 | |
|
| eval_best_f1_thresh | 0 | |
|
| eval_exact | 78.8175 | |
|
| eval_f1 | 81.9984 | |
|
| eval_samples | 12171 | |
|
| eval_total | 11873 | |
|
| train_loss | 0.775293 | |
|
| train_runtime | 1402 | |
|
| train_samples | 131958 | |
|
| train_samples_per_second | 282.363 | |
|
| train_steps_per_second | 1.104 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0.dev0 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.6 |
|
|