fine_tuned_model_5 / README.md
srikarvar's picture
Add new SentenceTransformer model.
4e4dc22 verified
---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2332
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Who discovered the structure of DNA?
sentences:
- Who discovered the structure of RNA?
- Steps to apply for a scholarship
- First human to set foot on the moon
- source_sentence: Who directed 'Schindler's List'?
sentences:
- Who directed 'The Pianist'?
- What are some high paying jobs for a fresher with an M.Tech in biotechnology?
- Where can I find gluten-free restaurants?
- source_sentence: Which is the best shares to purchase and sale daily trading?
sentences:
- In Sydney, which company would be the best to get advice for Business Sales &
Purchases?
- Steps to adjust phone settings
- Is a 3.8 GPA sufficient to get into a top school?
- source_sentence: Nd she is always sad?
sentences:
- Where to purchase organic produce
- Aerodynamically what happens when propellor rotates?
- How is unsupervised learning used for data insights?
- source_sentence: How to bake a pie?
sentences:
- What is the population of Chicago?
- Steps to bake a pie
- 'What is the distribution of traffic between Google organic search results? e.g.
#1 vs. #2 in rankings, first page vs. second page'
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8653846153846154
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.872760534286499
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8656716417910447
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8200240135192871
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8285714285714286
name: Cosine Precision
- type: cosine_recall
value: 0.90625
name: Cosine Recall
- type: cosine_ap
value: 0.9322624848213654
name: Cosine Ap
- type: dot_accuracy
value: 0.8653846153846154
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.872760534286499
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8656716417910447
name: Dot F1
- type: dot_f1_threshold
value: 0.8200240135192871
name: Dot F1 Threshold
- type: dot_precision
value: 0.8285714285714286
name: Dot Precision
- type: dot_recall
value: 0.90625
name: Dot Recall
- type: dot_ap
value: 0.9322624848213654
name: Dot Ap
- type: manhattan_accuracy
value: 0.8692307692307693
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.252302169799805
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8721804511278196
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.252302169799805
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8405797101449275
name: Manhattan Precision
- type: manhattan_recall
value: 0.90625
name: Manhattan Recall
- type: manhattan_ap
value: 0.9322911488571455
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8653846153846154
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5044240355491638
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8656716417910447
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5999571084976196
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8285714285714286
name: Euclidean Precision
- type: euclidean_recall
value: 0.90625
name: Euclidean Recall
- type: euclidean_ap
value: 0.9322624848213654
name: Euclidean Ap
- type: max_accuracy
value: 0.8692307692307693
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.252302169799805
name: Max Accuracy Threshold
- type: max_f1
value: 0.8721804511278196
name: Max F1
- type: max_f1_threshold
value: 9.252302169799805
name: Max F1 Threshold
- type: max_precision
value: 0.8405797101449275
name: Max Precision
- type: max_recall
value: 0.90625
name: Max Recall
- type: max_ap
value: 0.9322911488571455
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.916
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.844039261341095
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.907488986784141
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8230063319206238
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8728813559322034
name: Cosine Precision
- type: cosine_recall
value: 0.944954128440367
name: Cosine Recall
- type: cosine_ap
value: 0.96095333014952
name: Cosine Ap
- type: dot_accuracy
value: 0.916
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8440393209457397
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.907488986784141
name: Dot F1
- type: dot_f1_threshold
value: 0.8230063319206238
name: Dot F1 Threshold
- type: dot_precision
value: 0.8728813559322034
name: Dot Precision
- type: dot_recall
value: 0.944954128440367
name: Dot Recall
- type: dot_ap
value: 0.96095333014952
name: Dot Ap
- type: manhattan_accuracy
value: 0.916
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.581160545349121
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.907488986784141
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.327116012573242
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8728813559322034
name: Manhattan Precision
- type: manhattan_recall
value: 0.944954128440367
name: Manhattan Recall
- type: manhattan_ap
value: 0.9612698712458685
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.916
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5584936141967773
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.907488986784141
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.594968318939209
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8728813559322034
name: Euclidean Precision
- type: euclidean_recall
value: 0.944954128440367
name: Euclidean Recall
- type: euclidean_ap
value: 0.96095333014952
name: Euclidean Ap
- type: max_accuracy
value: 0.916
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.581160545349121
name: Max Accuracy Threshold
- type: max_f1
value: 0.907488986784141
name: Max F1
- type: max_f1_threshold
value: 9.327116012573242
name: Max F1 Threshold
- type: max_precision
value: 0.8728813559322034
name: Max Precision
- type: max_recall
value: 0.944954128440367
name: Max Recall
- type: max_ap
value: 0.9612698712458685
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_5")
# Run inference
sentences = [
'How to bake a pie?',
'Steps to bake a pie',
'What is the population of Chicago?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8654 |
| cosine_accuracy_threshold | 0.8728 |
| cosine_f1 | 0.8657 |
| cosine_f1_threshold | 0.82 |
| cosine_precision | 0.8286 |
| cosine_recall | 0.9062 |
| cosine_ap | 0.9323 |
| dot_accuracy | 0.8654 |
| dot_accuracy_threshold | 0.8728 |
| dot_f1 | 0.8657 |
| dot_f1_threshold | 0.82 |
| dot_precision | 0.8286 |
| dot_recall | 0.9062 |
| dot_ap | 0.9323 |
| manhattan_accuracy | 0.8692 |
| manhattan_accuracy_threshold | 9.2523 |
| manhattan_f1 | 0.8722 |
| manhattan_f1_threshold | 9.2523 |
| manhattan_precision | 0.8406 |
| manhattan_recall | 0.9062 |
| manhattan_ap | 0.9323 |
| euclidean_accuracy | 0.8654 |
| euclidean_accuracy_threshold | 0.5044 |
| euclidean_f1 | 0.8657 |
| euclidean_f1_threshold | 0.6 |
| euclidean_precision | 0.8286 |
| euclidean_recall | 0.9062 |
| euclidean_ap | 0.9323 |
| max_accuracy | 0.8692 |
| max_accuracy_threshold | 9.2523 |
| max_f1 | 0.8722 |
| max_f1_threshold | 9.2523 |
| max_precision | 0.8406 |
| max_recall | 0.9062 |
| **max_ap** | **0.9323** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.916 |
| cosine_accuracy_threshold | 0.844 |
| cosine_f1 | 0.9075 |
| cosine_f1_threshold | 0.823 |
| cosine_precision | 0.8729 |
| cosine_recall | 0.945 |
| cosine_ap | 0.961 |
| dot_accuracy | 0.916 |
| dot_accuracy_threshold | 0.844 |
| dot_f1 | 0.9075 |
| dot_f1_threshold | 0.823 |
| dot_precision | 0.8729 |
| dot_recall | 0.945 |
| dot_ap | 0.961 |
| manhattan_accuracy | 0.916 |
| manhattan_accuracy_threshold | 8.5812 |
| manhattan_f1 | 0.9075 |
| manhattan_f1_threshold | 9.3271 |
| manhattan_precision | 0.8729 |
| manhattan_recall | 0.945 |
| manhattan_ap | 0.9613 |
| euclidean_accuracy | 0.916 |
| euclidean_accuracy_threshold | 0.5585 |
| euclidean_f1 | 0.9075 |
| euclidean_f1_threshold | 0.595 |
| euclidean_precision | 0.8729 |
| euclidean_recall | 0.945 |
| euclidean_ap | 0.961 |
| max_accuracy | 0.916 |
| max_accuracy_threshold | 8.5812 |
| max_f1 | 0.9075 |
| max_f1_threshold | 9.3271 |
| max_precision | 0.8729 |
| max_recall | 0.945 |
| **max_ap** | **0.9613** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,332 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 12.96 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.67 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>0: ~52.80%</li><li>1: ~47.20%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------|:---------------------------------------------------------|:---------------|
| <code>How to bake a chocolate cake?</code> | <code>Recipe for baking a chocolate cake</code> | <code>1</code> |
| <code>Why do girls want to be friends with the guy they reject?</code> | <code>How do guys feel after rejecting a girl?</code> | <code>0</code> |
| <code>How can I stop being afraid of working?</code> | <code>How do you stop being afraid of everything?</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 260 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.44 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.99 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>0: ~50.77%</li><li>1: ~49.23%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------|:--------------------------------------------------|:---------------|
| <code>How to cook spaghetti?</code> | <code>Steps to cook spaghetti</code> | <code>1</code> |
| <code>How to create a mobile app?</code> | <code>How to create a desktop application?</code> | <code>0</code> |
| <code>How can I update my resume?</code> | <code>Steps to revise and update a resume</code> | <code>1</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|:-------:|:------:|:-------------:|:----------:|:---------------------:|:----------------------:|
| 0 | 0 | - | - | 0.6979 | - |
| 0.2740 | 10 | 1.9007 | - | - | - |
| 0.5479 | 20 | 1.1616 | - | - | - |
| 0.8219 | 30 | 0.9094 | - | - | - |
| 0.9863 | 36 | - | 0.7692 | 0.9117 | - |
| 1.0959 | 40 | 0.9105 | - | - | - |
| 1.3699 | 50 | 0.6629 | - | - | - |
| 1.6438 | 60 | 0.4243 | - | - | - |
| 1.9178 | 70 | 0.4729 | - | - | - |
| **2.0** | **73** | **-** | **0.7294** | **0.9306** | **-** |
| 2.1918 | 80 | 0.4897 | - | - | - |
| 2.4658 | 90 | 0.3103 | - | - | - |
| 2.7397 | 100 | 0.2316 | - | - | - |
| 2.9863 | 109 | - | 0.7807 | 0.9311 | - |
| 3.0137 | 110 | 0.3179 | - | - | - |
| 3.2877 | 120 | 0.1975 | - | - | - |
| 3.5616 | 130 | 0.1477 | - | - | - |
| 3.8356 | 140 | 0.1034 | - | - | - |
| 3.9452 | 144 | - | 0.8132 | 0.9323 | 0.9613 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->