metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: alzheimer_model_aug_deit5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9939271255060729
alzheimer_model_aug_deit5
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0472
- Accuracy: 0.9939
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 1234
- gradient_accumulation_steps: 10
- total_train_batch_size: 160
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.97 | 12 | 0.5252 | 0.8947 |
No log | 1.94 | 24 | 0.1506 | 0.9636 |
No log | 2.98 | 37 | 0.0787 | 0.9858 |
No log | 3.95 | 49 | 0.0587 | 0.9919 |
No log | 4.84 | 60 | 0.0472 | 0.9939 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1