ssmits's picture
Update README.md
8f639b9 verified
|
raw
history blame
2.12 kB
metadata
language:
  - en
pipeline_tag: text-classification
tags:
  - pretrained
license: apache-2.0
library_name: sentence-transformers

Qwen2-7B-Instruct-embed-base

Model Details

Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.

Requirements

The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0, or you might encounter the following error:

KeyError: 'qwen2'

Usage

The 'lm_head' layer of this model has been removed, which means it can be used for embeddings. It will not perform greatly, as it needs to be further fine-tuned, as shown by intfloat/e5-mistral-7b-instruct.

Inference

from sentence_transformers import SentenceTransformer
import torch

# 1. Load a pretrained Sentence Transformer model
model = SentenceTransformer("ssmits/Qwen2-7B-embed-base") # device = "cpu" when <= 24 GB VRAM

# The sentences to encode
sentences = [
    "The weather is lovely today.",
    "It's so sunny outside!",
    "He drove to the stadium.",
]

# 2. Calculate embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 3584)

# 3. Calculate the embedding similarities
# Assuming embeddings is a numpy array, convert it to a torch tensor
embeddings_tensor = torch.tensor(embeddings)

# Using torch to compute cosine similarity matrix
similarities = torch.nn.functional.cosine_similarity(embeddings_tensor.unsqueeze(0), embeddings_tensor.unsqueeze(1), dim=2)

print(similarities)
# tensor([[1.0000, 0.8608, 0.6609],
#         [0.8608, 1.0000, 0.7046],
#         [0.6609, 0.7046, 1.0000]])

Note: In my tests it utilizes more than 24GB (RTX 4090), so an A100 or A6000 would be required for inference.