merge new March changes
Browse files- handler.py +59 -27
handler.py
CHANGED
@@ -86,7 +86,7 @@ class Utterance:
|
|
86 |
'aggregateUnitMeasure': self.aggregate_unit_measure,
|
87 |
'wordCount': self.word_count,
|
88 |
'numMathTerms': self.num_math_terms,
|
89 |
-
'mathTerms': self.math_terms
|
90 |
}
|
91 |
|
92 |
def __repr__(self):
|
@@ -157,34 +157,45 @@ class Transcript:
|
|
157 |
uptake_teacher_dict = {}
|
158 |
stop_words = stopwords.words('english')
|
159 |
for utt in self.utterances:
|
160 |
-
words = (utt.get_clean_text(remove_punct=True)).split(' ')
|
161 |
for word in words:
|
162 |
-
if word in stop_words: continue
|
|
|
163 |
if utt.role == 'teacher':
|
164 |
-
if word not in teacher_dict:
|
165 |
-
teacher_dict[word] = 0
|
166 |
-
teacher_dict[word] += 1
|
167 |
if utt.uptake == 1:
|
168 |
if word not in uptake_teacher_dict:
|
169 |
uptake_teacher_dict[word] = 0
|
170 |
uptake_teacher_dict[word] += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
else:
|
172 |
if word not in student_dict:
|
173 |
student_dict[word] = 0
|
174 |
student_dict[word] += 1
|
175 |
dict_list = []
|
176 |
uptake_dict_list = []
|
|
|
|
|
177 |
for word in uptake_teacher_dict.keys():
|
178 |
uptake_dict_list.append({'text': word, 'value': uptake_teacher_dict[word], 'category': 'teacher'})
|
179 |
for word in teacher_dict.keys():
|
180 |
-
|
181 |
-
{'text': word, 'value': teacher_dict[word], 'category': '
|
|
|
182 |
for word in student_dict.keys():
|
183 |
-
|
184 |
-
{'text': word, 'value': student_dict[word], 'category': '
|
|
|
185 |
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
|
186 |
sorted_uptake_dict_list = sorted(uptake_dict_list, key=lambda x: x['value'], reverse=True)
|
187 |
-
|
|
|
|
|
188 |
|
189 |
def get_talk_timeline(self):
|
190 |
return [utterance.to_talk_timeline_dict() for utterance in self.utterances]
|
@@ -377,9 +388,10 @@ def load_math_terms():
|
|
377 |
def run_math_density(transcript):
|
378 |
math_terms, math_terms_dict = load_math_terms()
|
379 |
sorted_terms = sorted(math_terms, key=len, reverse=True)
|
380 |
-
|
|
|
381 |
for i, utt in enumerate(transcript.utterances):
|
382 |
-
text = utt.get_clean_text(remove_punct=
|
383 |
num_matches = 0
|
384 |
matched_positions = set()
|
385 |
match_list = []
|
@@ -387,22 +399,41 @@ def run_math_density(transcript):
|
|
387 |
matches = list(re.finditer(term, text, re.IGNORECASE))
|
388 |
# Filter out matches that share positions with longer terms
|
389 |
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
|
|
|
390 |
if len(matches) > 0:
|
391 |
-
if
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
395 |
# Update matched positions
|
396 |
matched_positions.update((match.start(), match.end()) for match in matches)
|
397 |
num_matches += len(matches)
|
|
|
398 |
utt.num_math_terms = num_matches
|
399 |
utt.math_terms = match_list
|
|
|
|
|
|
|
|
|
400 |
dict_list = []
|
401 |
-
for word in
|
402 |
-
|
403 |
-
{'text': word, 'value':
|
|
|
|
|
|
|
|
|
|
|
404 |
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
|
405 |
-
|
|
|
|
|
|
|
406 |
|
407 |
class EndpointHandler():
|
408 |
def __init__(self, path="."):
|
@@ -457,18 +488,19 @@ class EndpointHandler():
|
|
457 |
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
458 |
del focusing_question_model
|
459 |
|
460 |
-
math_cloud = run_math_density(transcript)
|
461 |
transcript.update_utterance_roles(uptake_speaker)
|
|
|
462 |
transcript.calculate_aggregate_word_count()
|
463 |
-
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, '
|
464 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
465 |
return_dict['talkDistribution'] = talk_dist
|
466 |
return_dict['talkLength'] = talk_len
|
467 |
talk_moments = transcript.get_talk_timeline()
|
468 |
return_dict['talkMoments'] = talk_moments
|
469 |
-
word_cloud, uptake_word_cloud = transcript.get_word_clouds()
|
470 |
-
|
471 |
-
|
472 |
-
return_dict['
|
|
|
473 |
|
474 |
return return_dict
|
|
|
86 |
'aggregateUnitMeasure': self.aggregate_unit_measure,
|
87 |
'wordCount': self.word_count,
|
88 |
'numMathTerms': self.num_math_terms,
|
89 |
+
'mathTerms': self.math_terms,
|
90 |
}
|
91 |
|
92 |
def __repr__(self):
|
|
|
157 |
uptake_teacher_dict = {}
|
158 |
stop_words = stopwords.words('english')
|
159 |
for utt in self.utterances:
|
160 |
+
words = (utt.get_clean_text(remove_punct=True)).split(' ')
|
161 |
for word in words:
|
162 |
+
if word in stop_words or word in ['inaudible', 'crosstalk']: continue
|
163 |
+
# handle uptake case
|
164 |
if utt.role == 'teacher':
|
|
|
|
|
|
|
165 |
if utt.uptake == 1:
|
166 |
if word not in uptake_teacher_dict:
|
167 |
uptake_teacher_dict[word] = 0
|
168 |
uptake_teacher_dict[word] += 1
|
169 |
+
# ignore math words so they don't get tagged as general
|
170 |
+
if any(math_word in word for math_word in utt.math_terms): continue
|
171 |
+
if utt.role == 'teacher':
|
172 |
+
if word not in teacher_dict:
|
173 |
+
teacher_dict[word] = 0
|
174 |
+
teacher_dict[word] += 1
|
175 |
+
|
176 |
else:
|
177 |
if word not in student_dict:
|
178 |
student_dict[word] = 0
|
179 |
student_dict[word] += 1
|
180 |
dict_list = []
|
181 |
uptake_dict_list = []
|
182 |
+
teacher_dict_list = []
|
183 |
+
student_dict_list = []
|
184 |
for word in uptake_teacher_dict.keys():
|
185 |
uptake_dict_list.append({'text': word, 'value': uptake_teacher_dict[word], 'category': 'teacher'})
|
186 |
for word in teacher_dict.keys():
|
187 |
+
teacher_dict_list.append(
|
188 |
+
{'text': word, 'value': teacher_dict[word], 'category': 'general'})
|
189 |
+
dict_list.append({'text': word, 'value': teacher_dict[word], 'category': 'general'})
|
190 |
for word in student_dict.keys():
|
191 |
+
student_dict_list.append(
|
192 |
+
{'text': word, 'value': student_dict[word], 'category': 'general'})
|
193 |
+
dict_list.append({'text': word, 'value': student_dict[word], 'category': 'general'})
|
194 |
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
|
195 |
sorted_uptake_dict_list = sorted(uptake_dict_list, key=lambda x: x['value'], reverse=True)
|
196 |
+
sorted_teacher_dict_list = sorted(teacher_dict_list, key=lambda x: x['value'], reverse=True)
|
197 |
+
sorted_student_dict_list = sorted(student_dict_list, key=lambda x: x['value'], reverse=True)
|
198 |
+
return sorted_dict_list[:50], sorted_uptake_dict_list[:50], sorted_teacher_dict_list[:50], sorted_student_dict_list[:50]
|
199 |
|
200 |
def get_talk_timeline(self):
|
201 |
return [utterance.to_talk_timeline_dict() for utterance in self.utterances]
|
|
|
388 |
def run_math_density(transcript):
|
389 |
math_terms, math_terms_dict = load_math_terms()
|
390 |
sorted_terms = sorted(math_terms, key=len, reverse=True)
|
391 |
+
teacher_math_word_cloud = {}
|
392 |
+
student_math_word_cloud = {}
|
393 |
for i, utt in enumerate(transcript.utterances):
|
394 |
+
text = utt.get_clean_text(remove_punct=True)
|
395 |
num_matches = 0
|
396 |
matched_positions = set()
|
397 |
match_list = []
|
|
|
399 |
matches = list(re.finditer(term, text, re.IGNORECASE))
|
400 |
# Filter out matches that share positions with longer terms
|
401 |
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
|
402 |
+
# matched_text = [match.group(0) for match in matches]
|
403 |
if len(matches) > 0:
|
404 |
+
if utt.role == "teacher":
|
405 |
+
if math_terms_dict[term] not in teacher_math_word_cloud:
|
406 |
+
teacher_math_word_cloud[math_terms_dict[term]] = 0
|
407 |
+
teacher_math_word_cloud[math_terms_dict[term]] += len(matches)
|
408 |
+
else:
|
409 |
+
if math_terms_dict[term] not in student_math_word_cloud:
|
410 |
+
student_math_word_cloud[math_terms_dict[term]] = 0
|
411 |
+
student_math_word_cloud[math_terms_dict[term]] += len(matches)
|
412 |
+
match_list.append(math_terms_dict[term])
|
413 |
# Update matched positions
|
414 |
matched_positions.update((match.start(), match.end()) for match in matches)
|
415 |
num_matches += len(matches)
|
416 |
+
# print("match group list: ", [match.group(0) for match in matches])
|
417 |
utt.num_math_terms = num_matches
|
418 |
utt.math_terms = match_list
|
419 |
+
# utt.math_match_positions = list(matched_positions)
|
420 |
+
# utt.math_terms_raw = [text[start:end] for start, end in matched_positions]
|
421 |
+
teacher_dict_list = []
|
422 |
+
student_dict_list = []
|
423 |
dict_list = []
|
424 |
+
for word in teacher_math_word_cloud.keys():
|
425 |
+
teacher_dict_list.append(
|
426 |
+
{'text': word, 'value': teacher_math_word_cloud[word], 'category': "math"})
|
427 |
+
dict_list.append({'text': word, 'value': teacher_math_word_cloud[word], 'category': "math"})
|
428 |
+
for word in student_math_word_cloud.keys():
|
429 |
+
student_dict_list.append(
|
430 |
+
{'text': word, 'value': student_math_word_cloud[word], 'category': "math"})
|
431 |
+
dict_list.append({'text': word, 'value': student_math_word_cloud[word], 'category': "math"})
|
432 |
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
|
433 |
+
sorted_teacher_dict_list = sorted(teacher_dict_list, key=lambda x: x['value'], reverse=True)
|
434 |
+
sorted_student_dict_list = sorted(student_dict_list, key=lambda x: x['value'], reverse=True)
|
435 |
+
# return sorted_dict_list[:50]
|
436 |
+
return sorted_dict_list[:50], sorted_teacher_dict_list[:50], sorted_student_dict_list[:50]
|
437 |
|
438 |
class EndpointHandler():
|
439 |
def __init__(self, path="."):
|
|
|
488 |
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
489 |
del focusing_question_model
|
490 |
|
|
|
491 |
transcript.update_utterance_roles(uptake_speaker)
|
492 |
+
sorted_math_cloud, teacher_math_cloud, student_math_cloud = run_math_density(transcript)
|
493 |
transcript.calculate_aggregate_word_count()
|
494 |
+
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'studentTopWords': None, 'teacherTopWords': None}
|
495 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
496 |
return_dict['talkDistribution'] = talk_dist
|
497 |
return_dict['talkLength'] = talk_len
|
498 |
talk_moments = transcript.get_talk_timeline()
|
499 |
return_dict['talkMoments'] = talk_moments
|
500 |
+
word_cloud, uptake_word_cloud, teacher_general_cloud, student_general_cloud = transcript.get_word_clouds()
|
501 |
+
teacher_cloud = teacher_math_cloud + teacher_general_cloud
|
502 |
+
student_cloud = student_math_cloud + student_general_cloud
|
503 |
+
return_dict['teacherTopWords'] = teacher_cloud
|
504 |
+
return_dict['studentTopWords'] = student_cloud
|
505 |
|
506 |
return return_dict
|