|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- eriktks/conll2003 |
|
language: |
|
- en |
|
base_model: |
|
- chandar-lab/NeoBERT |
|
tags: |
|
- ner |
|
--- |
|
|
|
# β¨ NeoBERT for NER |
|
|
|
This repository hosts an NeoBERT model that was fine-tuned on the CoNLL-2003 NER dataset. |
|
|
|
Please notice the following caveats: |
|
|
|
* β οΈ Work in progress, as e.g. new hyper-parameter changes or bug fixes for the implemented `NeoBERTForTokenClassification` class can occur. |
|
* β οΈ At the moment, don't expect BERT-like performance, more experiments are needed. (Is RoPE causing this?) |
|
|
|
## π Implementation |
|
|
|
An own `NeoBERTForTokenClassification` class was implemented to conduct experiments with Transformers. |
|
|
|
For all experiments, Transformers in version `4.50.0.dev0` is currently used including a recent built of `xFormers`, as NeoBERT depends on that for the `SwiGLU` implementation. |
|
|
|
For following code (based on the [PyTorch Token Classification example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) |
|
can be used for fine-tuning: |
|
|
|
```bash |
|
python3 run_ner.py \ |
|
--model_name_or_path /home/stefan/Repositories/NeoBERT \ |
|
--dataset_name conll2003 \ |
|
--output_dir ./neobert-conll2003-lr1e-05-e10-bs16-1 \ |
|
--seed 1 \ |
|
--do_train \ |
|
--do_eval \ |
|
--per_device_train_batch_size 16 \ |
|
--num_train_epochs 10 \ |
|
--learning_rate 1e-05 \ |
|
--eval_strategy epoch \ |
|
--save_strategy epoch \ |
|
--overwrite_output_dir \ |
|
--trust_remote_code True \ |
|
--load_best_model_at_end \ |
|
--metric_for_best_model "eval_f1" \ |
|
--greater_is_better True |
|
``` |
|
|
|
## π Performance |
|
|
|
A very basic hyper-parameter search is performanced for five different seeds, with reported averaged micro F1-Score on the development set of CoNLL-2003: |
|
|
|
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |
|
|:--------------------- | ---------:| -----:| -----:| -----:| -----:| -----:| |
|
| `bs=16,e=10,lr=1e-05` | **95.71** | 95.42 | 95.53 | 95.56 | 95.43 | 95.53 | |
|
| `bs=16,e=10,lr=2e-05` | 95.25 | 95.33 | 95.28 | 95.35 | 95.26 | 95.29 | |
|
| `bs=16,e=10,lr=3e-05` | 94.98 | 95.22 | 94.86 | 94.72 | 94.93 | 94.94 | |
|
| `bs=16,e=10,lr=4e-05` | 94.61 | 94.39 | 94.57 | 94.65 | 94.87 | 94.61 | |
|
| `bs=16,e=10,lr=5e-05` | 93.82 | 93.94 | 94.36 | 91.14 | 94.38 | 94.15 | |
|
|
|
The performance of the current uploaded model is marked in bold. |
|
|
|
## π£ Usage |
|
|
|
The following code can be used to test the model and recognize named entities for a given sentence: |
|
|
|
```python |
|
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model_name = "stefan-it/neobert-ner-conll03" |
|
|
|
|
|
model = AutoModelForTokenClassification.from_pretrained(model_name, trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
ner = pipeline(task="ner", |
|
model=model, |
|
tokenizer=tokenizer, |
|
trust_remote_code=True) |
|
|
|
print(ner("George Washington went to Washington in the US.")) |
|
``` |
|
|
|
This outputs: |
|
|
|
```json |
|
[ |
|
{'entity': 'B-PER', 'score': 0.99981505, 'index': 1, 'word': 'george', 'start': 0, 'end': 6}, |
|
{'entity': 'I-PER', 'score': 0.9997435, 'index': 2, 'word': 'washington', 'start': 7, 'end': 17}, |
|
{'entity': 'B-LOC', 'score': 0.99955124, 'index': 5, 'word': 'washington', 'start': 26, 'end': 36}, |
|
{'entity': 'B-LOC', 'score': 0.99958867, 'index': 8, 'word': 'us', 'start': 44, 'end': 46} |
|
] |
|
``` |