steimel64's picture
End of training
0723450 verified
|
raw
history blame
4.78 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.775

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2754
  • Accuracy: 0.775

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2856 1.0 67 2.2801 0.19
2.1936 2.0 134 2.1829 0.335
1.9496 3.0 201 1.9189 0.5
1.6727 4.0 268 1.6280 0.595
1.5444 5.0 335 1.4530 0.635
1.0974 6.0 402 1.2269 0.67
1.0647 7.0 469 1.0802 0.72
0.8521 8.0 536 0.9819 0.72
0.7618 9.0 603 0.9660 0.74
0.5022 10.0 670 0.8664 0.75
0.4576 11.0 737 0.8972 0.7
0.2801 12.0 804 0.8073 0.76
0.2404 13.0 871 0.7892 0.765
0.1493 14.0 938 0.8512 0.74
0.0945 15.0 1005 0.8876 0.74
0.049 16.0 1072 0.9735 0.72
0.0311 17.0 1139 0.9881 0.76
0.0225 18.0 1206 1.0965 0.735
0.0164 19.0 1273 1.0578 0.76
0.0124 20.0 1340 1.0298 0.75
0.0109 21.0 1407 1.0762 0.745
0.0085 22.0 1474 1.1168 0.75
0.0071 23.0 1541 1.1697 0.73
0.0063 24.0 1608 1.1204 0.765
0.0054 25.0 1675 1.1270 0.765
0.005 26.0 1742 1.1315 0.76
0.0521 27.0 1809 1.1868 0.755
0.004 28.0 1876 1.1645 0.77
0.0468 29.0 1943 1.1515 0.775
0.0036 30.0 2010 1.1655 0.775
0.0595 31.0 2077 1.2069 0.76
0.003 32.0 2144 1.2012 0.77
0.0029 33.0 2211 1.2369 0.755
0.0027 34.0 2278 1.2397 0.765
0.0026 35.0 2345 1.2581 0.765
0.029 36.0 2412 1.2226 0.76
0.0024 37.0 2479 1.1833 0.775
0.0023 38.0 2546 1.2723 0.765
0.0023 39.0 2613 1.2575 0.77
0.0284 40.0 2680 1.2945 0.76
0.002 41.0 2747 1.2345 0.765
0.0203 42.0 2814 1.2607 0.77
0.002 43.0 2881 1.2945 0.765
0.0019 44.0 2948 1.2487 0.77
0.0018 45.0 3015 1.2626 0.78
0.0018 46.0 3082 1.2692 0.77
0.0017 47.0 3149 1.2783 0.77
0.0018 48.0 3216 1.2813 0.775
0.0017 49.0 3283 1.2861 0.775
0.0275 50.0 3350 1.2754 0.775

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0