librarian-bot's picture
Librarian Bot: Add base_model information to model
e73739e
|
raw
history blame
2.14 kB
metadata
language:
  - fa
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: anuragshas/whisper-large-v2-hi
model-index:
  - name: Whisper_large_Persian
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 fa
          type: mozilla-foundation/common_voice_11_0
          config: fa
          split: test
        metrics:
          - type: wer
            value: 26.367876079171644
            name: Wer

Whisper large persian

This model is a fine-tuned version of anuragshas/whisper-large-v2-hi on the mozilla-foundation/common_voice_11_0 fa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3047
  • Wer: 26.3679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2948 0.19 250 0.4258 35.6023
0.2443 0.39 500 0.3650 30.9747
0.1956 0.58 750 0.3228 28.0196
0.1715 0.78 1000 0.3047 26.3679

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.2