|
<h1>General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model |
|
</h1> |
|
|
|
[GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/) | [Paper](https://arxiv.org/abs/2409.01704)</a> |
|
|
|
|
|
[Haoran Wei*](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, [Zheng Ge](https://joker316701882.github.io/), Liang Zhao, [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), [Yuang Peng](https://scholar.google.com.hk/citations?user=J0ko04IAAAAJ&hl=zh-CN&oi=ao), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en) |
|
|
|
|
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6653eee7a2d7a882a805ab95/QCEFY-M_YG3Bp5fn1GQ8X.jpeg) |
|
|
|
|
|
|
|
## Usage |
|
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10: |
|
``` |
|
torch==2.0.1 |
|
torchvision==0.15.2 |
|
transformers==4.37.2 |
|
megfile==3.1.2 |
|
``` |
|
|
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) |
|
model = model.eval().cuda() |
|
|
|
|
|
# input your test image |
|
image_file = 'xxx.jpg' |
|
|
|
# plain texts OCR |
|
res = model.chat(tokenizer, image_file, ocr_type='ocr') |
|
|
|
# format texts OCR: |
|
# res = model.chat(tokenizer, image_file, ocr_type='format') |
|
|
|
# fine-grained OCR: |
|
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='') |
|
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='') |
|
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='') |
|
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='') |
|
|
|
# multi-crop OCR: |
|
# res = model.chat_crop(tokenizer, image_file = image_file) |
|
|
|
# render the formatted OCR results: |
|
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='', ocr_color='', render=True, save_render_file = './demo.html') |
|
|
|
print(res) |
|
|
|
|
|
``` |
|
More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub. |
|
Our training codes are available at our [GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/). |
|
|
|
|
|
|
|
## More Multimodal Projects |
|
|
|
👏 Welcome to explore more multimodal projects of our team: |
|
|
|
[Vary](https://github.com/Ucas-HaoranWei/Vary) | [Fox](https://github.com/ucaslcl/Fox) | [OneChart](https://github.com/LingyvKong/OneChart) |
|
|
|
## Citation |
|
|
|
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️! |
|
|
|
```bib |
|
@article{wei2024general, |
|
title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model}, |
|
author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others}, |
|
journal={arXiv preprint arXiv:2409.01704}, |
|
year={2024} |
|
} |
|
@article{wei2023vary, |
|
title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models}, |
|
author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu}, |
|
journal={arXiv preprint arXiv:2312.06109}, |
|
year={2023} |
|
} |
|
``` |
|
|