Edit model card

videomae-base-finetuned-engine-subset-20230310

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4958
  • Accuracy: 0.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5947 0.05 31 2.5383 0.15
2.4195 1.05 62 2.5108 0.15
2.2476 2.05 93 2.0533 0.225
1.9449 3.05 124 2.0719 0.2375
1.5724 4.05 155 1.4756 0.475
1.395 5.05 186 1.2884 0.5
1.0822 6.05 217 1.0679 0.575
1.0635 7.05 248 0.8040 0.7
0.8707 8.05 279 0.9334 0.525
0.7042 9.05 310 0.6477 0.75
0.6543 10.05 341 0.6963 0.7375
0.6807 11.05 372 0.4958 0.85
0.4924 12.05 403 0.6374 0.775
0.4822 13.05 434 0.6145 0.75
0.4878 14.05 465 0.6274 0.7625
0.4442 15.05 496 0.4231 0.85
0.2739 16.05 527 0.4999 0.85
0.3514 17.05 558 0.4639 0.8375
0.4158 18.05 589 0.4291 0.85
0.2689 19.02 600 0.4294 0.85

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
5
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.