Steve Chiou
update model card README.md
22c33bf
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      videomae-large-finetuned-kinetics-finetuned-engine-subset-R2-K400-20230418_3
    results: []

videomae-large-finetuned-kinetics-finetuned-engine-subset-R2-K400-20230418_3

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1972
  • Accuracy: 0.2647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2700

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5562 0.02 55 2.5746 0.0221
2.4543 1.02 110 2.5524 0.0956
2.1443 2.02 165 2.5214 0.1103
1.6604 3.02 220 2.6415 0.1397
1.5847 4.02 275 2.9843 0.0735
1.4657 5.02 330 2.7476 0.1471
1.0823 6.02 385 3.0872 0.1471
1.0672 7.02 440 2.9539 0.2206
0.7241 8.02 495 3.5364 0.1103
0.6532 9.02 550 3.1972 0.2647
0.6476 10.02 605 4.1289 0.0735
0.3725 11.02 660 4.4710 0.0588
0.7363 12.02 715 4.9241 0.0662
0.3136 13.02 770 4.8217 0.1176
0.3154 14.02 825 4.2717 0.1838
0.309 15.02 880 4.9466 0.0588
0.3094 16.02 935 5.5394 0.0147
0.3333 17.02 990 5.0940 0.0956
0.2299 18.02 1045 6.3148 0.0074
0.2257 19.02 1100 5.3869 0.0588
0.255 20.02 1155 6.4134 0.0147
0.2335 21.02 1210 6.1413 0.0441
0.3507 22.02 1265 6.2911 0.0074
0.1463 23.02 1320 6.5273 0.0074
0.193 24.02 1375 6.6533 0.0074
0.1167 25.02 1430 6.8094 0.0
0.1168 26.02 1485 6.7632 0.0
0.0511 27.02 1540 7.0046 0.0074
0.1336 28.02 1595 7.2877 0.0
0.1518 29.02 1650 7.3102 0.0
0.1972 30.02 1705 7.1632 0.0
0.0605 31.02 1760 7.2970 0.0
0.1633 32.02 1815 7.3427 0.0
0.1902 33.02 1870 7.4095 0.0
0.132 34.02 1925 7.3169 0.0
0.1226 35.02 1980 7.4196 0.0074
0.115 36.02 2035 7.3248 0.0074
0.1348 37.02 2090 7.1318 0.0
0.1684 38.02 2145 7.6482 0.0
0.0722 39.02 2200 7.5944 0.0074
0.1155 40.02 2255 7.5615 0.0
0.1425 41.02 2310 7.6454 0.0074
0.1552 42.02 2365 7.4774 0.0074
0.1078 43.02 2420 7.3991 0.0074
0.1169 44.02 2475 7.3240 0.0
0.1438 45.02 2530 7.4133 0.0
0.1227 46.02 2585 7.4592 0.0
0.0716 47.02 2640 7.5590 0.0
0.2077 48.02 2695 7.5708 0.0
0.0731 49.0 2700 7.5710 0.0

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2