fine_tune_output_llama_3.2_3B_Instruct

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
5.3098 0.0170 10 4.6081
3.4781 0.0340 20 3.3873
2.7865 0.0510 30 2.4973
1.3726 0.0679 40 1.5682
1.2072 0.0849 50 0.9569
1.258 0.1019 60 0.8688
1.3057 0.1189 70 0.8637
0.7572 0.1359 80 0.8554
1.212 0.1529 90 0.8531
0.5833 0.1699 100 0.8439

Framework versions

  • PEFT 0.10.0
  • Transformers 4.44.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
21
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for stlee9048/fine_tune_output_llama_3.2_3B_Instruct

Adapter
(123)
this model