|
--- |
|
license: bigcode-openrail-m |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: aurora-m/aurora-m-v0.1 |
|
model-index: |
|
- name: lora-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: aurora-m/aurora-m-v0.1 # this can be swapped for mdel model when the model is released |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
is_llama_derived_model: false |
|
|
|
load_in_8bit: false # when this is true inference quality is terrible |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: /workspace/axolotl-mdel/mtg.txt # change this to where your dataset is |
|
type: completion # change this to 'alpaca' if you are using alpaca formatting |
|
|
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./lora-out |
|
|
|
sequence_len: 4096 # this can be tweaked for efficiency |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: mtg-aurora-test-Mike # give this a name |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 2 # this can be tweaked for efficiency |
|
micro_batch_size: 1 # this can be tweaked for efficiency |
|
num_epochs: 1 # this can be experimented with |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: true |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: false # when this is true, inference quality is terrible |
|
s2_attention: |
|
|
|
warmup_steps: 10 # this can be tweaked for efficiency |
|
evals_per_epoch: 10 # this can be tweaked for efficiency |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: "<|endoftext|>" |
|
eos_token: "<|endoftext|>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# lora-out |
|
|
|
This model is a fine-tuned version of [aurora-m/aurora-m-v0.1](https://huggingface.co/aurora-m/aurora-m-v0.1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7942 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 4.2833 | 0.0 | 1 | 4.0842 | |
|
| 2.1913 | 0.1 | 25 | 1.9823 | |
|
| 1.2729 | 0.21 | 50 | 1.2218 | |
|
| 1.0634 | 0.31 | 75 | 1.0093 | |
|
| 0.9576 | 0.41 | 100 | 0.9341 | |
|
| 0.9326 | 0.52 | 125 | 0.8691 | |
|
| 0.8558 | 0.62 | 150 | 0.8325 | |
|
| 0.8218 | 0.73 | 175 | 0.8047 | |
|
| 0.8579 | 0.83 | 200 | 0.7980 | |
|
| 0.9001 | 0.93 | 225 | 0.7942 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |