stulcrad's picture
Model save
186ba9e verified
metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - cnec
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: CNEC1_1_62types_xlm-roberta-large
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cnec
          type: cnec
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8268475544448411
          - name: Recall
            type: recall
            value: 0.8836322014498283
          - name: F1
            type: f1
            value: 0.8542973072666913
          - name: Accuracy
            type: accuracy
            value: 0.955501776025606

CNEC1_1_62types_xlm-roberta-large

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2611
  • Precision: 0.8268
  • Recall: 0.8836
  • F1: 0.8543
  • Accuracy: 0.9555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.601 1.7 500 0.4369 0.6449 0.6810 0.6625 0.9094
0.3697 3.4 1000 0.2542 0.7377 0.8176 0.7756 0.9440
0.2295 5.1 1500 0.2484 0.7583 0.8523 0.8026 0.9449
0.1531 6.8 2000 0.2301 0.7952 0.8710 0.8314 0.9496
0.1107 8.5 2500 0.2284 0.8192 0.8729 0.8452 0.9529
0.0801 10.2 3000 0.2435 0.8308 0.8901 0.8595 0.9561
0.0621 11.9 3500 0.2507 0.8156 0.8794 0.8463 0.9544
0.0454 13.61 4000 0.2611 0.8268 0.8836 0.8543 0.9555

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0