CNEC1_1_extended_xlm-roberta-large
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2020
- Precision: 0.8751
- Recall: 0.8947
- F1: 0.8848
- Accuracy: 0.9699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3776 | 1.0 | 581 | 0.1732 | 0.7868 | 0.8423 | 0.8136 | 0.9580 |
0.1773 | 2.0 | 1162 | 0.1476 | 0.8243 | 0.8675 | 0.8453 | 0.9625 |
0.127 | 3.0 | 1743 | 0.1522 | 0.8373 | 0.8691 | 0.8529 | 0.9654 |
0.1057 | 4.0 | 2324 | 0.1516 | 0.8604 | 0.8728 | 0.8665 | 0.9665 |
0.0852 | 5.0 | 2905 | 0.1555 | 0.8501 | 0.8883 | 0.8688 | 0.9700 |
0.069 | 6.0 | 3486 | 0.1847 | 0.8637 | 0.8910 | 0.8771 | 0.9681 |
0.0452 | 7.0 | 4067 | 0.1751 | 0.8666 | 0.8851 | 0.8757 | 0.9682 |
0.0385 | 8.0 | 4648 | 0.1968 | 0.8626 | 0.8888 | 0.8755 | 0.9690 |
0.0326 | 9.0 | 5229 | 0.1932 | 0.8717 | 0.8936 | 0.8826 | 0.9704 |
0.026 | 10.0 | 5810 | 0.2020 | 0.8751 | 0.8947 | 0.8848 | 0.9699 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 152
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for stulcrad/CNEC1_1_extended_xlm-roberta-large
Base model
FacebookAI/xlm-roberta-largeEvaluation results
- Precision on cnecvalidation set self-reported0.875
- Recall on cnecvalidation set self-reported0.895
- F1 on cnecvalidation set self-reported0.885
- Accuracy on cnecvalidation set self-reported0.970