stulcrad commited on
Commit
77f49b7
·
verified ·
1 Parent(s): fdc37f3

End of training

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8456410256410256
29
  - name: Recall
30
  type: recall
31
- value: 0.8813468733297701
32
  - name: F1
33
  type: f1
34
- value: 0.8631248364302538
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9673435458971619
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2299
48
- - Precision: 0.8456
49
- - Recall: 0.8813
50
- - F1: 0.8631
51
- - Accuracy: 0.9673
52
 
53
  ## Model description
54
 
@@ -67,31 +67,25 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 5e-05
71
- - train_batch_size: 8
72
- - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - lr_scheduler_warmup_ratio: 0.1
77
- - lr_scheduler_warmup_steps: 500
78
- - num_epochs: 10
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.5516 | 0.86 | 500 | 0.1912 | 0.7007 | 0.7857 | 0.7407 | 0.9493 |
85
- | 0.2153 | 1.72 | 1000 | 0.1856 | 0.6609 | 0.7825 | 0.7166 | 0.9461 |
86
- | 0.1389 | 2.58 | 1500 | 0.1711 | 0.7791 | 0.8445 | 0.8105 | 0.9574 |
87
- | 0.1098 | 3.44 | 2000 | 0.1943 | 0.8171 | 0.8642 | 0.84 | 0.9608 |
88
- | 0.0785 | 4.3 | 2500 | 0.2197 | 0.7919 | 0.8461 | 0.8181 | 0.9579 |
89
- | 0.0619 | 5.16 | 3000 | 0.1877 | 0.8298 | 0.8883 | 0.8580 | 0.9660 |
90
- | 0.043 | 6.02 | 3500 | 0.2185 | 0.8412 | 0.8803 | 0.8603 | 0.9656 |
91
- | 0.0289 | 6.88 | 4000 | 0.1898 | 0.8422 | 0.8846 | 0.8629 | 0.9674 |
92
- | 0.0179 | 7.75 | 4500 | 0.2061 | 0.8433 | 0.8830 | 0.8627 | 0.9674 |
93
- | 0.0112 | 8.61 | 5000 | 0.2218 | 0.8462 | 0.8819 | 0.8636 | 0.9656 |
94
- | 0.0074 | 9.47 | 5500 | 0.2299 | 0.8456 | 0.8813 | 0.8631 | 0.9673 |
95
 
96
 
97
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.843939393939394
29
  - name: Recall
30
  type: recall
31
+ value: 0.8767051416579223
32
  - name: F1
33
  type: f1
34
+ value: 0.8600102933607823
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9590540063536886
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2330
48
+ - Precision: 0.8439
49
+ - Recall: 0.8767
50
+ - F1: 0.8600
51
+ - Accuracy: 0.9591
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 32
72
+ - eval_batch_size: 32
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 25
 
 
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.6037 | 3.42 | 500 | 0.2144 | 0.6741 | 0.7263 | 0.6993 | 0.9407 |
83
+ | 0.2517 | 6.85 | 1000 | 0.1774 | 0.7915 | 0.8381 | 0.8141 | 0.9575 |
84
+ | 0.1854 | 10.27 | 1500 | 0.1633 | 0.8251 | 0.8621 | 0.8432 | 0.9632 |
85
+ | 0.1476 | 13.7 | 2000 | 0.1610 | 0.8356 | 0.8803 | 0.8574 | 0.9664 |
86
+ | 0.1248 | 17.12 | 2500 | 0.1657 | 0.8459 | 0.8830 | 0.8640 | 0.9682 |
87
+ | 0.1086 | 20.55 | 3000 | 0.1671 | 0.8542 | 0.8862 | 0.8699 | 0.9683 |
88
+ | 0.0985 | 23.97 | 3500 | 0.1610 | 0.8600 | 0.8931 | 0.8762 | 0.9700 |
 
 
 
 
89
 
90
 
91
  ### Framework versions
config.json CHANGED
@@ -3,12 +3,12 @@
3
  "architectures": [
4
  "XLMRobertaForTokenClassification"
5
  ],
6
- "attention_probs_dropout_prob": 0.1,
7
  "bos_token_id": 0,
8
  "classifier_dropout": null,
9
  "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
- "hidden_dropout_prob": 0.1,
12
  "hidden_size": 1024,
13
  "id2label": {
14
  "0": "O",
 
3
  "architectures": [
4
  "XLMRobertaForTokenClassification"
5
  ],
6
+ "attention_probs_dropout_prob": 0.2,
7
  "bos_token_id": 0,
8
  "classifier_dropout": null,
9
  "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.4,
12
  "hidden_size": 1024,
13
  "id2label": {
14
  "0": "O",
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4aeb9cbf303385dfa9952ac41593ea4e23a48847ee8f71de5d6d40272c915c28
3
  size 2235473356
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59bd35b85e3c1ea53167b581e47c0071bf767d9c2a95d08524089d7cc6eb654b
3
  size 2235473356
runs/Apr14_21-52-54_g04/events.out.tfevents.1713124377.g04.1046538.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d8464311ce26e6f4be4c3f18be973e6e4df94a7cadf2005e333570cfac4de10
3
+ size 40
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:03845185d88a7f88555718f6a7e184fdffcc91c02f03936bbc398d4c3cb79010
3
  size 4728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d950f5cbacd47c735cf795a7bb9260f9ed5e8763601f8428d23f4d02bd12652
3
  size 4728