stulcrad commited on
Commit
af45739
1 Parent(s): e779c68

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8551829268292683
29
  - name: Recall
30
  type: recall
31
  value: 0.8995189738107964
32
  - name: F1
33
  type: f1
34
- value: 0.8767908309455589
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9694414756758897
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2115
48
- - Precision: 0.8552
49
  - Recall: 0.8995
50
- - F1: 0.8768
51
- - Accuracy: 0.9694
52
 
53
  ## Model description
54
 
@@ -73,20 +73,26 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 15
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.2948 | 1.72 | 500 | 0.1385 | 0.7752 | 0.8589 | 0.8149 | 0.9620 |
83
- | 0.1185 | 3.44 | 1000 | 0.1411 | 0.8063 | 0.8808 | 0.8419 | 0.9692 |
84
- | 0.0762 | 5.15 | 1500 | 0.1485 | 0.8252 | 0.8781 | 0.8509 | 0.9690 |
85
- | 0.054 | 6.87 | 2000 | 0.1586 | 0.8368 | 0.8878 | 0.8615 | 0.9697 |
86
- | 0.0357 | 8.59 | 2500 | 0.1774 | 0.8364 | 0.8990 | 0.8666 | 0.9705 |
87
- | 0.026 | 10.31 | 3000 | 0.1869 | 0.8540 | 0.8974 | 0.8752 | 0.9700 |
88
- | 0.0189 | 12.03 | 3500 | 0.2040 | 0.8555 | 0.8958 | 0.8752 | 0.9698 |
89
- | 0.013 | 13.75 | 4000 | 0.2115 | 0.8552 | 0.8995 | 0.8768 | 0.9694 |
 
 
 
 
 
 
90
 
91
 
92
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8595505617977528
29
  - name: Recall
30
  type: recall
31
  value: 0.8995189738107964
32
  - name: F1
33
  type: f1
34
+ value: 0.8790806999216505
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9695206428373511
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2397
48
+ - Precision: 0.8596
49
  - Recall: 0.8995
50
+ - F1: 0.8791
51
+ - Accuracy: 0.9695
52
 
53
  ## Model description
54
 
 
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 25
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.3533 | 1.72 | 500 | 0.1415 | 0.7483 | 0.8439 | 0.7933 | 0.9609 |
83
+ | 0.1509 | 3.44 | 1000 | 0.1352 | 0.8073 | 0.8685 | 0.8368 | 0.9664 |
84
+ | 0.1072 | 5.15 | 1500 | 0.1533 | 0.8151 | 0.8739 | 0.8434 | 0.9674 |
85
+ | 0.0778 | 6.87 | 2000 | 0.1740 | 0.8400 | 0.8781 | 0.8586 | 0.9668 |
86
+ | 0.059 | 8.59 | 2500 | 0.1676 | 0.8365 | 0.8942 | 0.8644 | 0.9699 |
87
+ | 0.0475 | 10.31 | 3000 | 0.1699 | 0.8295 | 0.8813 | 0.8546 | 0.9678 |
88
+ | 0.0381 | 12.03 | 3500 | 0.1876 | 0.8418 | 0.8985 | 0.8692 | 0.9686 |
89
+ | 0.0287 | 13.75 | 4000 | 0.2100 | 0.8446 | 0.8979 | 0.8705 | 0.9681 |
90
+ | 0.0238 | 15.46 | 4500 | 0.2007 | 0.8466 | 0.8995 | 0.8722 | 0.9702 |
91
+ | 0.0186 | 17.18 | 5000 | 0.2201 | 0.8568 | 0.8926 | 0.8743 | 0.9689 |
92
+ | 0.0161 | 18.9 | 5500 | 0.2200 | 0.8573 | 0.8990 | 0.8776 | 0.9700 |
93
+ | 0.014 | 20.62 | 6000 | 0.2326 | 0.8601 | 0.8974 | 0.8784 | 0.9697 |
94
+ | 0.0104 | 22.34 | 6500 | 0.2370 | 0.8639 | 0.8990 | 0.8811 | 0.9696 |
95
+ | 0.0099 | 24.05 | 7000 | 0.2397 | 0.8596 | 0.8995 | 0.8791 | 0.9695 |
96
 
97
 
98
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88691f812348edf37d1fa31d819562dc3f139157add743b6f2d2ab6ab76003e1
3
  size 2235473356
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7be044ab4d469b9058c053715dd6780fdfba6167c64cc80f0f7ead876ddd99bb
3
  size 2235473356
runs/Mar05_22-53-35_n27/events.out.tfevents.1709675616.n27.1077979.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be45979bdcb947826bdb2fad9d500a0d20c911106c614b3f604862892822e6f1
3
- size 13718
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11ebce565e65394e97d543e8db7fad511ba5583dd0b001adb1b252959720c1ce
3
+ size 14072