stulcrad commited on
Commit
d06e73d
·
verified ·
1 Parent(s): 22b8451

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.848714069591528
29
  - name: Recall
30
  type: recall
31
- value: 0.8995189738107964
32
  - name: F1
33
  type: f1
34
- value: 0.8733783082511676
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9711435696473103
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1689
48
- - Precision: 0.8487
49
- - Recall: 0.8995
50
- - F1: 0.8734
51
- - Accuracy: 0.9711
52
 
53
  ## Model description
54
 
@@ -67,9 +67,9 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 2e-05
71
- - train_batch_size: 16
72
- - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
@@ -79,11 +79,17 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.3372 | 1.72 | 500 | 0.1525 | 0.7806 | 0.8632 | 0.8198 | 0.9639 |
83
- | 0.117 | 3.44 | 1000 | 0.1341 | 0.8162 | 0.8899 | 0.8514 | 0.9702 |
84
- | 0.077 | 5.15 | 1500 | 0.1457 | 0.8204 | 0.8765 | 0.8475 | 0.9672 |
85
- | 0.0548 | 6.87 | 2000 | 0.1759 | 0.8449 | 0.8910 | 0.8673 | 0.9690 |
86
- | 0.037 | 8.59 | 2500 | 0.1689 | 0.8487 | 0.8995 | 0.8734 | 0.9711 |
 
 
 
 
 
 
87
 
88
 
89
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8424273329933707
29
  - name: Recall
30
  type: recall
31
+ value: 0.882950293960449
32
  - name: F1
33
  type: f1
34
+ value: 0.8622129436325678
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9652851996991648
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2119
48
+ - Precision: 0.8424
49
+ - Recall: 0.8830
50
+ - F1: 0.8622
51
+ - Accuracy: 0.9653
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.3746 | 0.86 | 500 | 0.1861 | 0.7228 | 0.8097 | 0.7638 | 0.9523 |
83
+ | 0.2127 | 1.72 | 1000 | 0.1635 | 0.7829 | 0.8461 | 0.8133 | 0.9611 |
84
+ | 0.1494 | 2.58 | 1500 | 0.1704 | 0.7579 | 0.8466 | 0.7998 | 0.9546 |
85
+ | 0.1274 | 3.44 | 2000 | 0.1800 | 0.8003 | 0.8675 | 0.8325 | 0.9615 |
86
+ | 0.0987 | 4.3 | 2500 | 0.1511 | 0.8025 | 0.8883 | 0.8432 | 0.9657 |
87
+ | 0.0827 | 5.16 | 3000 | 0.1910 | 0.8179 | 0.8739 | 0.8450 | 0.9630 |
88
+ | 0.0677 | 6.02 | 3500 | 0.1655 | 0.8374 | 0.8808 | 0.8586 | 0.9689 |
89
+ | 0.0475 | 6.88 | 4000 | 0.1793 | 0.8270 | 0.8658 | 0.8460 | 0.9633 |
90
+ | 0.0396 | 7.75 | 4500 | 0.1687 | 0.8363 | 0.8899 | 0.8622 | 0.9672 |
91
+ | 0.0256 | 8.61 | 5000 | 0.1904 | 0.8315 | 0.8808 | 0.8554 | 0.9665 |
92
+ | 0.0223 | 9.47 | 5500 | 0.2119 | 0.8424 | 0.8830 | 0.8622 | 0.9653 |
93
 
94
 
95
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3a568c56b7a7af255b51e8ed432e29b6e7dfac695fbae845931c436969a871c
3
  size 2235473356
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06b492d3a2e7f436d4b15f8231ffbfc0d3e085ed9518047d0ed37557edebb9c
3
  size 2235473356
runs/Mar05_15-14-19_g11/events.out.tfevents.1709648060.g11.949095.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc0be2d7be8877483de790d1c90da09500856d20fb6a75fd26a4a3d3e70056bf
3
- size 11828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63cde793bb42f3354812f0d24ff469f60aaf7d5e0669af1a2235901129208d8
3
+ size 12182