Edit model card

CNEC1_1_xlm-roberta-large

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3816
  • Precision: 0.8521
  • Recall: 0.8721
  • F1: 0.8620
  • Accuracy: 0.9513

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4004 1.0 1174 0.2747 0.7598 0.7876 0.7735 0.9381
0.2765 2.0 2348 0.2268 0.8181 0.8340 0.8260 0.9506
0.2104 3.0 3522 0.2400 0.8318 0.8561 0.8438 0.9524
0.1713 4.0 4696 0.2285 0.8353 0.8645 0.8496 0.9552
0.1241 5.0 5870 0.2278 0.8458 0.8715 0.8584 0.9585
0.0997 6.0 7044 0.2717 0.8372 0.8653 0.8511 0.9559
0.0878 7.0 8218 0.2599 0.8439 0.8830 0.8630 0.9583
0.0585 8.0 9392 0.2868 0.8415 0.8764 0.8586 0.9564
0.0489 9.0 10566 0.2900 0.8594 0.8795 0.8693 0.9568
0.0416 10.0 11740 0.3061 0.8646 0.8852 0.8748 0.9598
0.0316 11.0 12914 0.3240 0.8567 0.8843 0.8703 0.9576
0.0264 12.0 14088 0.3329 0.8546 0.8795 0.8668 0.9588
0.0184 13.0 15262 0.3475 0.8628 0.8804 0.8715 0.9584
0.0156 14.0 16436 0.3472 0.8654 0.8826 0.8739 0.9592
0.0125 15.0 17610 0.3539 0.8670 0.8861 0.8764 0.9593

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
32
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stulcrad/CNEC1_1_xlm-roberta-large

Finetuned
(287)
this model

Evaluation results