Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,34 +68,27 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.0154 | 9.37 | 11000 | 0.3660 | 0.8621 | 0.8693 | 0.8657 | 0.9568 |
|
93 |
-
| 0.0096 | 10.22 | 12000 | 0.3851 | 0.8565 | 0.8746 | 0.8654 | 0.9570 |
|
94 |
-
| 0.0077 | 11.07 | 13000 | 0.3553 | 0.8567 | 0.8737 | 0.8651 | 0.9576 |
|
95 |
-
| 0.0094 | 11.93 | 14000 | 0.3742 | 0.8560 | 0.8684 | 0.8622 | 0.9573 |
|
96 |
-
| 0.0064 | 12.78 | 15000 | 0.3656 | 0.8570 | 0.8755 | 0.8661 | 0.9582 |
|
97 |
-
| 0.0032 | 13.63 | 16000 | 0.3607 | 0.8607 | 0.8812 | 0.8709 | 0.9594 |
|
98 |
-
| 0.0026 | 14.48 | 17000 | 0.3712 | 0.8608 | 0.8795 | 0.8701 | 0.9589 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8643410852713178
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8860927152317881
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8750817527795944
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9606151684296811
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.3309
|
48 |
+
- Precision: 0.8643
|
49 |
+
- Recall: 0.8861
|
50 |
+
- F1: 0.8751
|
51 |
+
- Accuracy: 0.9606
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 2
|
72 |
+
- eval_batch_size: 2
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.3987 | 1.0 | 2348 | 0.2694 | 0.7643 | 0.8102 | 0.7865 | 0.9411 |
|
83 |
+
| 0.2937 | 2.0 | 4696 | 0.2530 | 0.8060 | 0.8252 | 0.8154 | 0.9491 |
|
84 |
+
| 0.2096 | 3.0 | 7044 | 0.2699 | 0.8285 | 0.8552 | 0.8416 | 0.9516 |
|
85 |
+
| 0.2114 | 4.0 | 9392 | 0.2632 | 0.8361 | 0.8693 | 0.8524 | 0.9572 |
|
86 |
+
| 0.1678 | 5.0 | 11740 | 0.2695 | 0.8344 | 0.8565 | 0.8453 | 0.9543 |
|
87 |
+
| 0.1352 | 6.0 | 14088 | 0.2680 | 0.8557 | 0.8821 | 0.8687 | 0.9578 |
|
88 |
+
| 0.0875 | 7.0 | 16436 | 0.2894 | 0.8532 | 0.8826 | 0.8676 | 0.9599 |
|
89 |
+
| 0.0735 | 8.0 | 18784 | 0.2816 | 0.8537 | 0.8834 | 0.8683 | 0.9606 |
|
90 |
+
| 0.0641 | 9.0 | 21132 | 0.3170 | 0.8627 | 0.8852 | 0.8738 | 0.9594 |
|
91 |
+
| 0.0629 | 10.0 | 23480 | 0.3309 | 0.8643 | 0.8861 | 0.8751 | 0.9606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
### Framework versions
|