Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,21 +79,21 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
|
98 |
|
99 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8521036974075649
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8721183123096998
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8619948409286329
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9512518524296076
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.3816
|
48 |
+
- Precision: 0.8521
|
49 |
+
- Recall: 0.8721
|
50 |
+
- F1: 0.8620
|
51 |
+
- Accuracy: 0.9513
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.4004 | 1.0 | 1174 | 0.2747 | 0.7598 | 0.7876 | 0.7735 | 0.9381 |
|
83 |
+
| 0.2765 | 2.0 | 2348 | 0.2268 | 0.8181 | 0.8340 | 0.8260 | 0.9506 |
|
84 |
+
| 0.2104 | 3.0 | 3522 | 0.2400 | 0.8318 | 0.8561 | 0.8438 | 0.9524 |
|
85 |
+
| 0.1713 | 4.0 | 4696 | 0.2285 | 0.8353 | 0.8645 | 0.8496 | 0.9552 |
|
86 |
+
| 0.1241 | 5.0 | 5870 | 0.2278 | 0.8458 | 0.8715 | 0.8584 | 0.9585 |
|
87 |
+
| 0.0997 | 6.0 | 7044 | 0.2717 | 0.8372 | 0.8653 | 0.8511 | 0.9559 |
|
88 |
+
| 0.0878 | 7.0 | 8218 | 0.2599 | 0.8439 | 0.8830 | 0.8630 | 0.9583 |
|
89 |
+
| 0.0585 | 8.0 | 9392 | 0.2868 | 0.8415 | 0.8764 | 0.8586 | 0.9564 |
|
90 |
+
| 0.0489 | 9.0 | 10566 | 0.2900 | 0.8594 | 0.8795 | 0.8693 | 0.9568 |
|
91 |
+
| 0.0416 | 10.0 | 11740 | 0.3061 | 0.8646 | 0.8852 | 0.8748 | 0.9598 |
|
92 |
+
| 0.0316 | 11.0 | 12914 | 0.3240 | 0.8567 | 0.8843 | 0.8703 | 0.9576 |
|
93 |
+
| 0.0264 | 12.0 | 14088 | 0.3329 | 0.8546 | 0.8795 | 0.8668 | 0.9588 |
|
94 |
+
| 0.0184 | 13.0 | 15262 | 0.3475 | 0.8628 | 0.8804 | 0.8715 | 0.9584 |
|
95 |
+
| 0.0156 | 14.0 | 16436 | 0.3472 | 0.8654 | 0.8826 | 0.8739 | 0.9592 |
|
96 |
+
| 0.0125 | 15.0 | 17610 | 0.3539 | 0.8670 | 0.8861 | 0.8764 | 0.9593 |
|
97 |
|
98 |
|
99 |
### Framework versions
|