stulcrad commited on
Commit
72228eb
·
verified ·
1 Parent(s): 7e19c2b

Model save

Browse files
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cnec
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: CNEC1_1_xlm-roberta-large
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: cnec
21
+ type: cnec
22
+ config: default
23
+ split: validation
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8298668885191348
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8807947019867549
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8545727136431784
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9612006713767126
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # CNEC1_1_xlm-roberta-large
44
+
45
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2279
48
+ - Precision: 0.8299
49
+ - Recall: 0.8808
50
+ - F1: 0.8546
51
+ - Accuracy: 0.9612
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.5393 | 1.7 | 500 | 0.2155 | 0.7523 | 0.8313 | 0.7898 | 0.9494 |
83
+ | 0.164 | 3.4 | 1000 | 0.1931 | 0.7883 | 0.8481 | 0.8171 | 0.9563 |
84
+ | 0.0958 | 5.1 | 1500 | 0.2049 | 0.8092 | 0.8614 | 0.8345 | 0.9587 |
85
+ | 0.0523 | 6.8 | 2000 | 0.2152 | 0.8265 | 0.8728 | 0.8490 | 0.9595 |
86
+ | 0.0323 | 8.5 | 2500 | 0.2279 | 0.8299 | 0.8808 | 0.8546 | 0.9612 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.36.2
92
+ - Pytorch 2.1.2+cu121
93
+ - Datasets 2.16.1
94
+ - Tokenizers 0.15.0
runs/Mar04_23-10-18_g11/events.out.tfevents.1709590223.g11.840720.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7fcabdc00bc07946cf29e3bb0e5e47990fa68d745106c5b5703051065d06201
3
- size 10435
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a20dff540cab55d27b44e6c4527928bd8921dff950e4cf8dc6cbc502b7aa2498
3
+ size 10789