stulcrad commited on
Commit
9f88c44
1 Parent(s): abcbeaf

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8387096774193549
29
  - name: Recall
30
  type: recall
31
- value: 0.8838852097130243
32
  - name: F1
33
  type: f1
34
- value: 0.8607050730868444
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9616690737343377
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2514
48
- - Precision: 0.8387
49
- - Recall: 0.8839
50
- - F1: 0.8607
51
- - Accuracy: 0.9617
52
 
53
  ## Model description
54
 
@@ -73,23 +73,21 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 10
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.5884 | 0.85 | 500 | 0.2401 | 0.7095 | 0.8022 | 0.7530 | 0.9450 |
83
- | 0.2568 | 1.7 | 1000 | 0.2119 | 0.7630 | 0.8313 | 0.7957 | 0.9510 |
84
- | 0.1871 | 2.56 | 1500 | 0.2000 | 0.7857 | 0.8305 | 0.8075 | 0.9534 |
85
- | 0.1475 | 3.41 | 2000 | 0.1958 | 0.7763 | 0.8547 | 0.8136 | 0.9554 |
86
- | 0.1231 | 4.26 | 2500 | 0.1978 | 0.7972 | 0.8711 | 0.8325 | 0.9562 |
87
- | 0.091 | 5.11 | 3000 | 0.2219 | 0.8126 | 0.8808 | 0.8453 | 0.9587 |
88
- | 0.068 | 5.96 | 3500 | 0.2162 | 0.8231 | 0.8728 | 0.8472 | 0.9584 |
89
- | 0.0535 | 6.81 | 4000 | 0.2368 | 0.8351 | 0.8808 | 0.8573 | 0.9607 |
90
- | 0.0463 | 7.67 | 4500 | 0.2442 | 0.8330 | 0.8786 | 0.8552 | 0.9598 |
91
- | 0.0326 | 8.52 | 5000 | 0.2495 | 0.8359 | 0.8790 | 0.8569 | 0.9605 |
92
- | 0.0286 | 9.37 | 5500 | 0.2514 | 0.8387 | 0.8839 | 0.8607 | 0.9617 |
93
 
94
 
95
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8197264815582262
29
  - name: Recall
30
  type: recall
31
+ value: 0.873289183222958
32
  - name: F1
33
  type: f1
34
+ value: 0.8456605386917486
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9604980678402748
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2155
48
+ - Precision: 0.8197
49
+ - Recall: 0.8733
50
+ - F1: 0.8457
51
+ - Accuracy: 0.9605
52
 
53
  ## Model description
54
 
 
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 8
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.7506 | 0.85 | 500 | 0.2818 | 0.6550 | 0.7687 | 0.7073 | 0.9354 |
83
+ | 0.2862 | 1.7 | 1000 | 0.2055 | 0.7555 | 0.8238 | 0.7882 | 0.9500 |
84
+ | 0.2057 | 2.56 | 1500 | 0.2090 | 0.7792 | 0.8415 | 0.8092 | 0.9534 |
85
+ | 0.1698 | 3.41 | 2000 | 0.1992 | 0.7818 | 0.8623 | 0.8201 | 0.9575 |
86
+ | 0.1366 | 4.26 | 2500 | 0.2036 | 0.8086 | 0.8746 | 0.8403 | 0.9584 |
87
+ | 0.1049 | 5.11 | 3000 | 0.2000 | 0.8062 | 0.8689 | 0.8364 | 0.9607 |
88
+ | 0.0885 | 5.96 | 3500 | 0.2087 | 0.8059 | 0.8689 | 0.8362 | 0.9571 |
89
+ | 0.0673 | 6.81 | 4000 | 0.2063 | 0.8281 | 0.8786 | 0.8526 | 0.9602 |
90
+ | 0.0628 | 7.67 | 4500 | 0.2155 | 0.8197 | 0.8733 | 0.8457 | 0.9605 |
 
 
91
 
92
 
93
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad3f170cf996c0be8eaff4b8226a0ccb6384f2706e8234a072813aa1859296bd
3
  size 2235760364
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e651eeb2fe295ac2c10cfbf8de2d55a5ebd377c1ff4596217daf1784c1e1018a
3
  size 2235760364
runs/Mar06_15-53-24_n21/events.out.tfevents.1709736805.n21.3385783.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:40caf29e96454d5b12a53087a8d402e927f103ffe0acb8f2241285637ff5e0f5
3
- size 12949
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b18e82c4b3bf0c3304eb6a30edea171a3cfc938e1503cb77475d74d73c58cef2
3
+ size 13303