Part of Advanced NLP Project for Team Shrine - Adnan Qidwai, Harshit Karwal and Shrikara Arun. CleanCaption is an image captioning model that forget an object from the image when generating the caption. It is a finetuned version of microsoft/Florence-2-large-ft.

Usage:

from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch

device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    "sudokara/CleanCaption",
    trust_remote_code=True
).eval().to(device)

def forget(prompt, image_path):
    image = Image.open(image_path).convert("RGB")
    prompt = f"Forget from caption: {str(prompt)}".strip(' :')
    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        do_sample=True,
        num_beams=3,
    )
    return processor.decode(generated_ids[0]).replace('<s>', '').replace('</s>', '')

image_path = "image.png"
print(forget(image_path = image_path, prompt = "water"))
Downloads last month
6
Safetensors
Model size
823M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .