Whisper Medium HU

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2699
  • Wer Ortho: 17.1763
  • Wer: 14.8290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0804 1.38 2000 0.1977 19.2869 16.6612
0.038 2.76 4000 0.2028 18.2211 15.7494
0.014 4.14 6000 0.2190 17.9961 15.3466
0.0107 5.51 8000 0.2328 17.3490 14.9370
0.0144 6.89 10000 0.2376 17.4153 14.9559
0.0049 8.27 12000 0.2424 16.9984 14.6953
0.0071 9.65 14000 0.2594 17.6961 15.3586
0.0037 11.03 16000 0.2546 17.2007 14.8667
0.0078 12.41 18000 0.2644 17.5757 15.1495
0.0043 13.78 20000 0.2699 17.1763 14.8290

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
11
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sugafree/whisper-medium-hu

Finetuned
(531)
this model

Dataset used to train sugafree/whisper-medium-hu

Evaluation results