|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: google/mt5-small
|
|
tags:
|
|
- summarization
|
|
- generated_from_trainer
|
|
metrics:
|
|
- rouge
|
|
model-index:
|
|
- name: sathwik_reddy_t5_summary
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# sathwik_reddy_t5_summary
|
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 2.4258
|
|
- Rouge1: 0.3185
|
|
- Rouge2: 0.1246
|
|
- Rougel: 0.2850
|
|
- Rougelsum: 0.2855
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5.6e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 8
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
|
| 3.1533 | 1.0 | 440 | 2.5586 | 0.2832 | 0.1122 | 0.2578 | 0.2589 |
|
|
| 3.0151 | 2.0 | 880 | 2.5020 | 0.2943 | 0.1113 | 0.2626 | 0.2635 |
|
|
| 2.9157 | 3.0 | 1320 | 2.4919 | 0.3029 | 0.1158 | 0.2710 | 0.2716 |
|
|
| 2.8355 | 4.0 | 1760 | 2.4670 | 0.3043 | 0.1163 | 0.2749 | 0.2753 |
|
|
| 2.7702 | 5.0 | 2200 | 2.4386 | 0.3143 | 0.1220 | 0.2826 | 0.2834 |
|
|
| 2.7169 | 6.0 | 2640 | 2.4322 | 0.3120 | 0.1202 | 0.2805 | 0.2807 |
|
|
| 2.6884 | 7.0 | 3080 | 2.4255 | 0.3154 | 0.1222 | 0.2834 | 0.2839 |
|
|
| 2.6671 | 8.0 | 3520 | 2.4258 | 0.3185 | 0.1246 | 0.2850 | 0.2855 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.47.0
|
|
- Pytorch 2.5.1+cu124
|
|
- Datasets 3.2.0
|
|
- Tokenizers 0.21.0
|
|
|