phi-3-mini-LoRA / README.md
sujithatz's picture
sujithatz/finbot-transofrmer-based-phi3.5_adapter
4ef2579 verified
|
raw
history blame
4.06 kB
metadata
base_model: microsoft/Phi-3.5-mini-instruct
library_name: peft
license: mit
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: phi-3-mini-LoRA
    results: []

phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • training_steps: 250

Training results

Training Loss Epoch Step Validation Loss
1.6578 1.3333 5 1.6863
1.6277 2.6667 10 1.6771
1.615 4.0 15 1.6615
1.5879 5.3333 20 1.6372
1.5835 6.6667 25 1.6028
1.5908 8.0 30 1.5586
1.5143 9.3333 35 1.5012
1.4633 10.6667 40 1.4352
1.3414 12.0 45 1.3606
1.3229 13.3333 50 1.2811
1.2218 14.6667 55 1.2119
1.1352 16.0 60 1.1488
1.0852 17.3333 65 1.0885
0.9989 18.6667 70 1.0299
0.9959 20.0 75 0.9757
0.921 21.3333 80 0.9205
0.8727 22.6667 85 0.8683
0.8067 24.0 90 0.8200
0.7785 25.3333 95 0.7783
0.7139 26.6667 100 0.7396
0.7081 28.0 105 0.7095
0.6705 29.3333 110 0.6824
0.6177 30.6667 115 0.6613
0.6106 32.0 120 0.6418
0.575 33.3333 125 0.6239
0.5904 34.6667 130 0.6083
0.5917 36.0 135 0.5927
0.5051 37.3333 140 0.5801
0.5169 38.6667 145 0.5656
0.5442 40.0 150 0.5542
0.5112 41.3333 155 0.5432
0.5061 42.6667 160 0.5321
0.5071 44.0 165 0.5234
0.4373 45.3333 170 0.5119
0.4476 46.6667 175 0.5049
0.3914 48.0 180 0.4972
0.465 49.3333 185 0.4914
0.4122 50.6667 190 0.4890
0.4209 52.0 195 0.4837
0.3933 53.3333 200 0.4784
0.3583 54.6667 205 0.4760
0.3952 56.0 210 0.4727
0.3858 57.3333 215 0.4708
0.3433 58.6667 220 0.4707
0.4041 60.0 225 0.4680
0.3558 61.3333 230 0.4665
0.382 62.6667 235 0.4650
0.3625 64.0 240 0.4638
0.3513 65.3333 245 0.4644
0.3541 66.6667 250 0.4630

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0