File size: 4,749 Bytes
ff59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-7B
tags:
- axolotl
- generated_from_trainer
datasets:
- sumuks/openreview_wintermute_0.1_training_data
model-index:
- name: purple-wintermute-0.1-7b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-7B
hub_model_id: sumuks/purple-wintermute-0.1-7b
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false
bf16: true
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
save_safetensors:

datasets:
  - path: sumuks/openreview_wintermute_0.1_training_data
    type: completion
    field: text
dataset_prepared_path: .axolotl_cache_data/wintermute_0.1
shuffle_merged_datasets: true
# dataset_exact_deduplication: true
val_set_size: 0.005
output_dir: ./../../outputs/purple-wintermute-0.1-7b
push_dataset_to_hub: sumuks/purple_wintermute_0.1_training_data_in_progress

sequence_length: 2048
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_r: 256
lora_alpha: 32
lora_dropout: 0.05
peft_use_rslora: true
lora_target_linear: true

gradient_accumulation_steps: 1
micro_batch_size: 32
eval_batch_size: 1
num_epochs: 3
learning_rate: 5e-5
warmup_ratio: 0.05
evals_per_epoch: 10
saves_per_epoch: 5
gradient_checkpointing: true
lr_scheduler: cosine
optimizer: paged_adamw_8bit

profiler_steps: 100
save_safetensors: true
train_on_inputs: true
wandb_project: wintermute 
wandb_name: purple-wintermute-0.1-7b
deepspeed: deepspeed_configs/zero1.json
```

</details><br>

# purple-wintermute-0.1-7b

This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.1_training_data dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4027

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 386
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8108        | 0.1002 | 258  | 1.9127          |
| 1.6982        | 0.2004 | 516  | 1.8592          |
| 1.663         | 0.3006 | 774  | 1.8258          |
| 1.585         | 0.4008 | 1032 | 1.7978          |
| 1.5201        | 0.5010 | 1290 | 1.7578          |
| 1.4313        | 0.6012 | 1548 | 1.7181          |
| 1.3256        | 0.7014 | 1806 | 1.6692          |
| 1.2364        | 0.8016 | 2064 | 1.6194          |
| 1.161         | 0.9017 | 2322 | 1.5741          |
| 1.1284        | 1.0016 | 2580 | 1.5281          |
| 1.0433        | 1.1017 | 2838 | 1.4999          |
| 1.0058        | 1.2019 | 3096 | 1.4770          |
| 1.0179        | 1.3021 | 3354 | 1.4603          |
| 0.9993        | 1.4023 | 3612 | 1.4409          |
| 0.99          | 1.5025 | 3870 | 1.4319          |
| 0.9971        | 1.6027 | 4128 | 1.4222          |
| 0.9626        | 1.7029 | 4386 | 1.4126          |
| 0.9396        | 1.8031 | 4644 | 1.4083          |
| 0.9497        | 1.9033 | 4902 | 1.4041          |
| 0.901         | 2.0031 | 5160 | 1.4068          |
| 0.9222        | 2.1033 | 5418 | 1.4081          |
| 0.8882        | 2.2035 | 5676 | 1.4060          |
| 0.9253        | 2.3037 | 5934 | 1.4043          |
| 0.8687        | 2.4039 | 6192 | 1.4035          |
| 0.9058        | 2.5041 | 6450 | 1.4025          |
| 0.8624        | 2.6043 | 6708 | 1.4033          |
| 0.8928        | 2.7045 | 6966 | 1.4028          |
| 0.874         | 2.8047 | 7224 | 1.4029          |
| 0.8892        | 2.9049 | 7482 | 1.4027          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.21.0