File size: 4,749 Bytes
ff59b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-7B
tags:
- axolotl
- generated_from_trainer
datasets:
- sumuks/openreview_wintermute_0.1_training_data
model-index:
- name: purple-wintermute-0.1-7b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-7B
hub_model_id: sumuks/purple-wintermute-0.1-7b
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
bf16: true
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
save_safetensors:
datasets:
- path: sumuks/openreview_wintermute_0.1_training_data
type: completion
field: text
dataset_prepared_path: .axolotl_cache_data/wintermute_0.1
shuffle_merged_datasets: true
# dataset_exact_deduplication: true
val_set_size: 0.005
output_dir: ./../../outputs/purple-wintermute-0.1-7b
push_dataset_to_hub: sumuks/purple_wintermute_0.1_training_data_in_progress
sequence_length: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_r: 256
lora_alpha: 32
lora_dropout: 0.05
peft_use_rslora: true
lora_target_linear: true
gradient_accumulation_steps: 1
micro_batch_size: 32
eval_batch_size: 1
num_epochs: 3
learning_rate: 5e-5
warmup_ratio: 0.05
evals_per_epoch: 10
saves_per_epoch: 5
gradient_checkpointing: true
lr_scheduler: cosine
optimizer: paged_adamw_8bit
profiler_steps: 100
save_safetensors: true
train_on_inputs: true
wandb_project: wintermute
wandb_name: purple-wintermute-0.1-7b
deepspeed: deepspeed_configs/zero1.json
```
</details><br>
# purple-wintermute-0.1-7b
This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.1_training_data dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 386
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8108 | 0.1002 | 258 | 1.9127 |
| 1.6982 | 0.2004 | 516 | 1.8592 |
| 1.663 | 0.3006 | 774 | 1.8258 |
| 1.585 | 0.4008 | 1032 | 1.7978 |
| 1.5201 | 0.5010 | 1290 | 1.7578 |
| 1.4313 | 0.6012 | 1548 | 1.7181 |
| 1.3256 | 0.7014 | 1806 | 1.6692 |
| 1.2364 | 0.8016 | 2064 | 1.6194 |
| 1.161 | 0.9017 | 2322 | 1.5741 |
| 1.1284 | 1.0016 | 2580 | 1.5281 |
| 1.0433 | 1.1017 | 2838 | 1.4999 |
| 1.0058 | 1.2019 | 3096 | 1.4770 |
| 1.0179 | 1.3021 | 3354 | 1.4603 |
| 0.9993 | 1.4023 | 3612 | 1.4409 |
| 0.99 | 1.5025 | 3870 | 1.4319 |
| 0.9971 | 1.6027 | 4128 | 1.4222 |
| 0.9626 | 1.7029 | 4386 | 1.4126 |
| 0.9396 | 1.8031 | 4644 | 1.4083 |
| 0.9497 | 1.9033 | 4902 | 1.4041 |
| 0.901 | 2.0031 | 5160 | 1.4068 |
| 0.9222 | 2.1033 | 5418 | 1.4081 |
| 0.8882 | 2.2035 | 5676 | 1.4060 |
| 0.9253 | 2.3037 | 5934 | 1.4043 |
| 0.8687 | 2.4039 | 6192 | 1.4035 |
| 0.9058 | 2.5041 | 6450 | 1.4025 |
| 0.8624 | 2.6043 | 6708 | 1.4033 |
| 0.8928 | 2.7045 | 6966 | 1.4028 |
| 0.874 | 2.8047 | 7224 | 1.4029 |
| 0.8892 | 2.9049 | 7482 | 1.4027 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.21.0 |