|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2.5-7B |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- sumuks/openreview_wintermute_0.2_training_data |
|
model-index: |
|
- name: purple-wintermute-0.2-7b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
base_model: Qwen/Qwen2.5-7B |
|
hub_model_id: sumuks/purple-wintermute-0.2-7b |
|
trust_remote_code: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
bf16: true |
|
hf_use_auth_token: true |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_glu_activation: true |
|
liger_layer_norm: true |
|
liger_fused_linear_cross_entropy: true |
|
save_safetensors: |
|
|
|
datasets: |
|
- path: sumuks/openreview_wintermute_0.2_training_data |
|
type: completion |
|
field: text |
|
dataset_prepared_path: .axolotl_cache_data/wintermute_0.2 |
|
shuffle_merged_datasets: true |
|
# dataset_exact_deduplication: true |
|
val_set_size: 0.005 |
|
output_dir: ./../../outputs/purple-wintermute-0.2-7b |
|
push_dataset_to_hub: sumuks/purple_wintermute_0.2_training_data_in_progress |
|
|
|
sequence_length: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_r: 256 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
peft_use_rslora: true |
|
lora_target_linear: true |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 16 |
|
eval_batch_size: 1 |
|
num_epochs: 3 |
|
learning_rate: 5e-5 |
|
warmup_ratio: 0.05 |
|
evals_per_epoch: 5 |
|
saves_per_epoch: 5 |
|
gradient_checkpointing: true |
|
lr_scheduler: cosine |
|
optimizer: paged_adamw_8bit |
|
|
|
profiler_steps: 100 |
|
save_safetensors: true |
|
train_on_inputs: true |
|
wandb_project: wintermute |
|
wandb_name: purple-wintermute-0.2-7b |
|
deepspeed: deepspeed_configs/zero1.json |
|
``` |
|
|
|
</details><br> |
|
|
|
# purple-wintermute-0.2-7b |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.2_training_data dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3961 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 389 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0.0004 | 1 | 2.6905 | |
|
| 1.6977 | 0.2002 | 519 | 1.8454 | |
|
| 1.5955 | 0.4004 | 1038 | 1.7875 | |
|
| 1.4268 | 0.6006 | 1557 | 1.7164 | |
|
| 1.2613 | 0.8008 | 2076 | 1.6061 | |
|
| 1.1526 | 1.0012 | 2595 | 1.5174 | |
|
| 1.0637 | 1.2014 | 3114 | 1.4811 | |
|
| 1.0251 | 1.4015 | 3633 | 1.4466 | |
|
| 0.9791 | 1.6017 | 4152 | 1.4230 | |
|
| 0.9609 | 1.8019 | 4671 | 1.4072 | |
|
| 1.0291 | 2.0023 | 5190 | 1.3994 | |
|
| 0.917 | 2.2025 | 5709 | 1.4018 | |
|
| 0.9306 | 2.4027 | 6228 | 1.3995 | |
|
| 0.8935 | 2.6029 | 6747 | 1.3963 | |
|
| 0.9343 | 2.8031 | 7266 | 1.3961 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |