The Superposition of Diffusion Models Using the It么 Density Estimator: Pipeline
This pipeline shows how to superimpose different text prompts from Stable Diffusion-XL 1.0 based the paper The Superposition of Diffusion Models Using the It么 Density Estimator. The authors would like to thank Viktor Ohanesian for developing the SD-XL pipeline.
Requirements
This pipeline can be run with the following packages & versions:
PyTorch 2.5.1
Diffusers 0.32.1
Accelerate 1.2.1
Transformers 4.47.1
You can install these with:
pip install torch
pip install diffusers accelerate transformers
Example usage
from PIL import Image
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("superdiff/superdiff-sdxl-v1-0", custom_pipeline='pipeline', trust_remote_code=True)
output = pipeline("a flamingo", "a candy cane", seed=1, num_inference_steps=200, batch_size=1)
image = Image.fromarray(output[0])
image.save("superdiff_output.png")
Arguments that can be set by user in pipeline()
:
prompt_1
[required]: text prompt describing first concept to superimpose (e.g. "a flamingo")prompt_2
[required]: text prompt describing second concept to superimpose (e.g. "a candy cane")seed
[optional: default=None]: seed for random noise generator for reproducibility; for non-deterministic outputs, set toNone
num_inference_steps
[optional: default=200]: number of denoising stepsbatch_size
[optional: default=1]: batch sizeguidance_scale
[optional: default=7.5]: scale for classifier-free guidanceheight
,width
[optional: default=1024]: height and width of generated images (we recommend leaving it at 1024!)
Note: for generating realistic photos with SDXL, we recommend using prompts such as "teapot, high quality photography"
or "a highly realistic photo of a volcano"
.
Citation
BibTeX:
@article{skreta2025superposition,
title={The Superposition of Diffusion Models Using the It$\backslash$\^{} o Density Estimator},
author={Skreta, Marta and Atanackovic, Lazar and Bose, Avishek Joey and Tong, Alexander and Neklyudov, Kirill},
journal={International Conference on Learning Representations},
year={2025}
}
- Downloads last month
- 123
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for superdiff/superdiff-sdxl-v1-0
Base model
stabilityai/stable-diffusion-xl-base-1.0