whisper-a-nomi-17

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0335
  • Wer: 9.5621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 17
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 88 0.3229 37.8910
0.9213 2.0 176 0.0773 21.7158
0.135 3.0 264 0.0585 26.5416
0.0547 4.0 352 0.0728 177.7480
0.0453 5.0 440 0.0574 18.0518
0.0237 6.0 528 0.0531 15.0134
0.0147 7.0 616 0.0271 6.6130
0.0106 8.0 704 0.0362 7.2386
0.0106 9.0 792 0.0491 8.9366
0.0063 10.0 880 0.0327 8.1323
0.0036 11.0 968 0.0352 7.3280
0.0009 12.0 1056 0.0695 11.4388
0.0023 13.0 1144 0.0338 10.2770
0.0001 14.0 1232 0.0374 10.2770
0.0 15.0 1320 0.0335 9.5621
0.0 16.0 1408 0.0335 9.5621
0.0 17.0 1496 0.0335 9.5621

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/whisper-a-nomi-17

Finetuned
(2200)
this model