metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-nomimose-ls
results: []
whisper-a-nomimose-ls
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0225
- Wer: 39.3068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 11
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9697 | 1.0 | 109 | 0.1804 | 43.4366 |
0.1049 | 2.0 | 218 | 0.0635 | 24.7050 |
0.0649 | 3.0 | 327 | 0.0376 | 13.4218 |
0.0659 | 4.0 | 436 | 0.0545 | 12.0944 |
0.0301 | 5.0 | 545 | 0.0538 | 23.2301 |
0.0382 | 6.0 | 654 | 0.0335 | 25.0737 |
0.0176 | 7.0 | 763 | 0.0253 | 28.9086 |
0.0153 | 8.0 | 872 | 0.0258 | 26.9174 |
0.0082 | 9.0 | 981 | 0.0257 | 51.4749 |
0.0054 | 10.0 | 1090 | 0.0222 | 42.5516 |
0.0036 | 10.9032 | 1188 | 0.0225 | 39.3068 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0