Edit model card

xlsr-nm-nomo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0423
  • Wer: 0.3916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7334 6.4590 200 3.1082 1.0
2.9544 12.9180 400 2.8429 0.9956
2.0771 19.3607 600 1.2204 0.8341
0.7271 25.8197 800 1.0868 0.5531
0.3103 32.2623 1000 1.0536 0.4912
0.1852 38.7213 1200 0.9030 0.4469
0.1399 45.1639 1400 0.8980 0.4491
0.0864 51.6230 1600 0.8315 0.4292
0.0643 58.0656 1800 0.9488 0.4004
0.0525 64.5246 2000 0.9354 0.4137
0.0455 70.9836 2200 0.9717 0.4093
0.0383 77.4262 2400 0.9781 0.4004
0.0261 83.8852 2600 1.1244 0.3938
0.0265 90.3279 2800 1.0439 0.4004
0.0197 96.7869 3000 1.0423 0.3916

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
12
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/xlsr-nm-nomo

Finetuned
(206)
this model