Edit model card

wav2vec2-base-random-stop-classification-1

This model is a fine-tuned version of on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4066
  • Accuracy: 0.8651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6949 0.99 18 0.6706 0.5906
0.6753 1.97 36 0.6470 0.6383
0.6231 2.96 54 0.5590 0.7302
0.544 4.0 73 0.4623 0.7977
0.4806 4.99 91 0.4061 0.8317
0.4543 5.97 109 0.5891 0.7643
0.4947 6.96 127 0.3944 0.8386
0.4431 8.0 146 0.4528 0.8093
0.4147 8.99 164 0.4560 0.8222
0.4094 9.97 182 0.4193 0.8447
0.3906 10.96 200 0.3846 0.8549
0.3835 12.0 219 0.3845 0.8569
0.3632 12.99 237 0.3660 0.8644
0.3622 13.97 255 0.4107 0.8617
0.3472 14.96 273 0.3733 0.8685
0.3419 16.0 292 0.4496 0.8467
0.3074 16.99 310 0.3987 0.8638
0.3278 17.97 328 0.3740 0.8665
0.2841 18.96 346 0.3999 0.8651
0.2837 20.0 365 0.3954 0.8604
0.2928 20.99 383 0.3871 0.8644
0.3002 21.97 401 0.4978 0.8386
0.2783 22.96 419 0.4079 0.8692
0.2703 24.0 438 0.3977 0.8713
0.2816 24.66 450 0.4066 0.8651

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.