Edit model card

wav2vec2-base-random-stop-classification-2

This model is a fine-tuned version of on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4265
  • Accuracy: 0.8569

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6925 0.99 18 0.6506 0.6049
0.6667 1.97 36 0.6474 0.6396
0.5762 2.96 54 0.5791 0.7670
0.559 4.0 73 0.4603 0.7963
0.4892 4.99 91 0.4248 0.8161
0.4853 5.97 109 0.4544 0.8113
0.4452 6.96 127 0.5181 0.8011
0.4747 8.0 146 0.3739 0.8454
0.4026 8.99 164 0.4483 0.8249
0.4326 9.97 182 0.3992 0.8447
0.4149 10.96 200 0.3607 0.8542
0.3995 12.0 219 0.4662 0.8256
0.36 12.99 237 0.4375 0.8495
0.3807 13.97 255 0.4013 0.8351
0.401 14.96 273 0.4875 0.8311
0.3349 16.0 292 0.3810 0.8610
0.3279 16.99 310 0.4288 0.8392
0.3111 17.97 328 0.4160 0.8460
0.3092 18.96 346 0.4469 0.8379
0.3202 20.0 365 0.4294 0.8563
0.3027 20.99 383 0.3928 0.8569
0.3022 21.97 401 0.4829 0.8399
0.2934 22.96 419 0.3978 0.8604
0.2789 24.0 438 0.4027 0.8610
0.2714 24.66 450 0.4265 0.8569

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.