Edit model card

wav2vec2-base-random-stop-classification-5

This model is a fine-tuned version of on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4239
  • Accuracy: 0.8631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6916 0.99 18 0.6503 0.6362
0.6628 1.97 36 0.5354 0.7391
0.5922 2.96 54 0.4775 0.7786
0.5158 4.0 73 0.4559 0.8072
0.4733 4.99 91 0.4308 0.8188
0.4935 5.97 109 0.5186 0.7888
0.4512 6.96 127 0.4108 0.8358
0.4397 8.0 146 0.4692 0.8270
0.4037 8.99 164 0.4049 0.8304
0.4053 9.97 182 0.4054 0.8379
0.3774 10.96 200 0.4330 0.8379
0.3624 12.0 219 0.3800 0.8495
0.376 12.99 237 0.5123 0.8263
0.3908 13.97 255 0.4049 0.8386
0.3405 14.96 273 0.4200 0.8529
0.3542 16.0 292 0.4040 0.8569
0.3284 16.99 310 0.4578 0.8474
0.3094 17.97 328 0.4465 0.8522
0.2999 18.96 346 0.4126 0.8569
0.3059 20.0 365 0.4139 0.8529
0.2891 20.99 383 0.4101 0.8624
0.2968 21.97 401 0.4589 0.8501
0.2764 22.96 419 0.4263 0.8522
0.2841 24.0 438 0.4350 0.8597
0.2805 24.66 450 0.4239 0.8631

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.