Edit model card

svenbl80/roberta-large-finetuned-mnli

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0360
  • Validation Loss: 0.5873
  • Train Accuracy: 0.8758
  • Epoch: 17

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 736290, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.4137 0.3492 0.8715 0
0.3226 0.3720 0.8733 1
0.2768 0.4048 0.8728 2
0.2267 0.3649 0.8808 3
0.1890 0.4397 0.8646 4
0.1621 0.4422 0.8772 5
0.1378 0.4529 0.8758 6
0.1191 0.4992 0.8642 7
0.1102 0.4681 0.8693 8
0.0970 0.4758 0.8779 9
0.0851 0.4850 0.8630 10
0.0884 0.5140 0.8767 11
0.0644 0.5284 0.8801 12
0.0605 0.5239 0.8765 13
0.0554 0.7088 0.8433 14
0.0460 0.5774 0.8722 15
0.0386 0.5296 0.8741 16
0.0360 0.5873 0.8758 17

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.11.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for svenbl80/roberta-large-finetuned-mnli

Finetuned
(282)
this model