Text Generation
Transformers
PyTorch
longllama
code
text-generation-inference
custom_code
Eval Results
File size: 64,878 Bytes
f36dfc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
# coding=utf-8
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LongLLaMA model."""
from dataclasses import dataclass
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_longllama import LongLlamaConfig
from .longllama_utils import mem_apply_update, LongLlamaMemCache, LongLlamaMemConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LongLlamaConfig"


@dataclass
class LongLlamaModelOutputWithPast(BaseModelOutputWithPast):
    """
    Based on BaseModelOutputWithPast

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
        mem_caches  (`tuple(LongLlamaMemCache))`, *optional*, returned for layers with memory cache enabled):
            For the layers without memory None is returned
    """

    mem_caches: Optional[LongLlamaMemCache] = None


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->LongLlama
class LongLlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LongLlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->LongLlama
class LongLlamaRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Based on transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def rotate_one(x, cos, sin, position_ids):
    if len(position_ids.shape) != 2 or x.shape[0] != position_ids.shape[0] or x.shape[-2] != position_ids.shape[1]:
        raise ValueError(f"Position ids shoud have shape [bsz, seq_len] got {position_ids.shape}")
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    x_embed = (x * cos) + (rotate_half(x) * sin)
    return x_embed


def rotate_as_if_first(x, rotary_emb):
    # x: [bs, num_attention_heads, seq_len, head_size]
    # apply rotary as if all elements were first in the sequence
    cos, sin = rotary_emb(x, x.shape[-2])
    return rotate_one(x, cos, sin, torch.zeros(x.shape[0], x.shape[-2], dtype=torch.long, device=cos.device))


# Based on an 4.30 transformers.models.llama.modeling_llama.LlamaMLP with Llama->LongLlama
class LongLlamaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


# Modified transformers.models.llama.modeling_llama.LlamaAttention
class LongLlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper with FoT modifications"""

    def __init__(self, config: LongLlamaConfig, mem_config: Optional[LongLlamaMemConfig] = None):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.max_cache = self.max_position_embeddings
        self.rope_theta = config.rope_theta

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self._init_rope()
        self.mem_config = mem_config

    def _init_rope(self):
        assert self.config.rope_scaling is None
        self.rotary_emb = LongLlamaRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        mem_cache: Optional[LongLlamaMemCache] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if attention_mask is None:
            tgt_seq_len = hidden_states.shape[-2]
            if past_key_value is not None:
                src_seq_len = past_key_value[0].shape[-2] + tgt_seq_len
            else:
                src_seq_len = tgt_seq_len

            attention_mask = torch.zeros(
                hidden_states.shape[0],
                1,
                tgt_seq_len,
                src_seq_len,
                device=hidden_states.device,
                dtype=hidden_states.dtype,
            )
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        position_ids = position_ids[:, None, :, None]

        if position_ids.shape != (key_states.shape[0], 1, key_states.shape[-2], 1):
            raise ValueError("position_ids should match batch and seq_len of the input")

        mem_no_local_cache = self.mem_config is not None and past_key_value is None and (not use_cache)
        mem_and_local_cache = self.mem_config is not None and use_cache
        # positonal embeddings can be disabled for memory layers
        use_positionals = self.mem_config is None or self.mem_config.positionals

        if mem_no_local_cache:
            # the whole context window will be moved to memory cache after the attention
            if use_positionals:
                # positionally embedd memory content as first token in the sequence
                rfst_key_states = rotate_as_if_first(key_states, self.rotary_emb)
            else:
                rfst_key_states = key_states
            # attention_mask [bsz, 1, tgt_seq_len, src_seq_len]
            # we base the mask on the last token in the context window
            mem_update = LongLlamaMemCache(
                keys=rfst_key_states.to(self.mem_config.cache_dtype),
                values=value_states.to(self.mem_config.cache_dtype),
                masks=attention_mask[..., -1, :, None],
            )

        if past_key_value is not None:
            past_local_cache_size = past_key_value[0].shape[-2]
            key_states = torch.cat([past_key_value[0], key_states], dim=-2)
            value_states = torch.cat([past_key_value[1], value_states], dim=-2)
            # FoT additionally stores position_ids to support long inputs
            position_ids = torch.cat([past_key_value[2], position_ids], dim=-2)

            if attention_mask.shape[-1] != key_states.shape[-2] and attention_mask.shape[-2] != query_states.shape[-2]:
                raise ValueError("attention_mask should be provided for all key_states in local context")

            # local cache is maintained so that it is <= self.max_cache
            # remaining elements are either dropped or go to memory cache
            if key_states.shape[-2] > self.max_cache:
                num_elems_to_drop = past_local_cache_size

                if mem_and_local_cache:
                    drop_keys = key_states[:, :, :num_elems_to_drop, :]
                    drop_values = value_states[:, :, :num_elems_to_drop, :]
                    # as memory mask use the masking of the last key in context
                    # attention_mask [bsz, 1, tgt_seq_len, src_seq_len]
                    drop_masks = attention_mask[..., -1, :, None]
                    drop_masks = drop_masks[:, :, :num_elems_to_drop, :]

                    if use_positionals:
                        rfst_drop_keys = rotate_as_if_first(drop_keys, self.rotary_emb)
                    else:
                        rfst_drop_keys = drop_keys
                    mem_update = LongLlamaMemCache(
                        keys=rfst_drop_keys.to(self.mem_config.cache_dtype),
                        values=drop_values.to(self.mem_config.cache_dtype),
                        masks=drop_masks,
                    )
                    if mem_cache is None:
                        mem_cache = mem_update
                    else:
                        mem_cache = mem_apply_update(
                            prev_mem_cache=mem_cache, new_mem_content=mem_update, mem_config=self.mem_config
                        )

                key_states = key_states[:, :, num_elems_to_drop:, :]
                value_states = value_states[:, :, num_elems_to_drop:, :]
                position_ids = position_ids[:, :, num_elems_to_drop:, :]
                attention_mask = attention_mask[..., num_elems_to_drop:]

        # FoT additionally stores position_ids to support long inputs
        past_key_value = (key_states, value_states, position_ids) if use_cache else None

        kv_seq_len = key_states.shape[-2]

        if use_positionals:
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
            rel_pos_ids = position_ids - torch.min(position_ids, dim=-2, keepdim=True)[0]
            rel_pos_ids = rel_pos_ids.squeeze(3).squeeze(1)

            query_states = rotate_one(query_states, cos, sin, rel_pos_ids[:, -query_states.shape[-2] :])
            key_states = rotate_one(key_states, cos, sin, rel_pos_ids)

        if self.mem_config is not None and self.mem_config.attention_grouping is not None:
            attn_grouping_h, attn_grouping_q = self.mem_config.attention_grouping
            if attn_grouping_h <= 0 or attn_grouping_q <= 0:
                raise ValueError("Attention grouping should be positive")
        else:
            attn_grouping_h, attn_grouping_q = self.num_heads, q_len

        attn_output_h = []
        for beg_h in range(0, self.num_heads, attn_grouping_h):
            end_h = min(beg_h + attn_grouping_h, self.num_heads)

            attn_output_q = []
            for beg_q in range(0, q_len, attn_grouping_q):
                end_q = min(beg_q + attn_grouping_q, q_len)

                if self.config.torch_attention:
                    if mem_cache is not None:
                        attn_keys = torch.concat(
                            [key_states[:, beg_h:end_h], mem_cache.keys[:, beg_h:end_h].to(key_states.dtype)], dim=-2
                        )
                        attn_values = torch.concat(
                            [value_states[:, beg_h:end_h], mem_cache.values[:, beg_h:end_h].to(value_states.dtype)],
                            dim=-2,
                        )
                        mem_mask = mem_cache.masks.squeeze(-1).unsqueeze(-2)
                        assert len(mem_mask.shape) == 4
                        assert mem_mask.shape[2] == 1
                        assert mem_mask.shape[3] == mem_cache.keys.shape[-2]
                        mem_mask = torch.broadcast_to(
                            mem_mask, (mem_mask.shape[0], mem_mask.shape[1], end_q - beg_q, mem_mask.shape[3])
                        )
                        attn_mask = torch.concat([attention_mask[:, :, beg_q:end_q], mem_mask], dim=-1)
                        assert attn_mask.shape[-1] == attn_keys.shape[-2]
                    else:
                        attn_keys = key_states[:, beg_h:end_h]
                        attn_values = value_states[:, beg_h:end_h]
                        attn_mask = attention_mask[:, :, beg_q:end_q]

                    attn_queries = query_states[:, beg_h:end_h, beg_q:end_q]

                    attn_output = torch.nn.functional.scaled_dot_product_attention(
                        query=attn_queries, key=attn_keys, value=attn_values, attn_mask=attn_mask
                    )
                    attn_output_q.append(attn_output)
                else:
                    attn_weights = torch.matmul(
                        query_states[:, beg_h:end_h, beg_q:end_q], key_states[:, beg_h:end_h].transpose(2, 3)
                    ) / math.sqrt(self.head_dim)

                    if attn_weights.size() != (bsz, end_h - beg_h, end_q - beg_q, kv_seq_len):
                        raise ValueError(
                            f"Attention weights should be of size {(bsz, end_h - beg_h, end_q - beg_q, kv_seq_len)}, but is"
                            f" {attn_weights.size()}"
                        )

                    if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                        raise ValueError(
                            f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                        )
                    attn_weights = attn_weights + attention_mask[:, :, beg_q:end_q]
                    min_value = (
                        torch.finfo(attn_weights.dtype).min
                        if -1000000.0 < torch.finfo(attn_weights.dtype).min
                        else -1000000.0
                    )
                    attn_weights = torch.max(
                        attn_weights, torch.tensor(min_value, device=attn_weights.device, dtype=attn_weights.dtype)
                    )

                    if mem_cache is not None:
                        mem_mask = mem_cache.masks.squeeze(-1).unsqueeze(-2)
                        mem_attn_weights = torch.matmul(
                            query_states[:, beg_h:end_h, beg_q:end_q],
                            mem_cache.keys[:, beg_h:end_h].transpose(2, 3).to(key_states.dtype),
                        ) / math.sqrt(self.head_dim)

                        assert mem_mask.shape[2] == 1
                        mem_attn_weights = mem_attn_weights + mem_mask
                        min_value = (
                            torch.finfo(mem_attn_weights.dtype).min
                            if -1000000.0 < torch.finfo(mem_attn_weights.dtype).min
                            else -1000000.0
                        )
                        mem_attn_weights = torch.max(
                            mem_attn_weights,
                            torch.tensor(min_value, device=mem_attn_weights.device, dtype=mem_attn_weights.dtype),
                        )

                        attn_weights = torch.concat([attn_weights, mem_attn_weights], dim=-1)
                        combined_value_states = torch.concat(
                            [value_states[:, beg_h:end_h], mem_cache.values[:, beg_h:end_h].to(value_states.dtype)],
                            dim=-2,
                        )
                    else:
                        combined_value_states = value_states[:, beg_h:end_h]
                    # upcast attention to fp32
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
                        query_states.dtype
                    )
                    attn_output = torch.matmul(attn_weights, combined_value_states)
                    assert attn_output.shape[-2] == end_q - beg_q
                    attn_output_q.append(attn_output)
            attn_output_h.append(torch.concat(attn_output_q, dim=-2))

        attn_output = torch.concat(attn_output_h, dim=-3)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        if mem_no_local_cache:
            if mem_cache is not None:
                mem_cache = mem_apply_update(
                    prev_mem_cache=mem_cache, new_mem_content=mem_update, mem_config=self.mem_config
                )
            else:
                mem_cache = mem_update

        return attn_output, attn_weights, past_key_value, mem_cache


# Modified transformers.models.llama.modeling_llama.LlamaDecoderLayer
class LongLlamaDecoderLayer(nn.Module):
    def __init__(self, config: LongLlamaConfig, mem_config: Optional[LongLlamaMemConfig] = None):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LongLlamaAttention(config=config, mem_config=mem_config)
        self.mlp = LongLlamaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.input_layernorm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        mem_cache: Optional[LongLlamaMemCache] = None,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
                along with information about positions
            mem_cache (`LongLlamaMemCache`, *optional*): memory cache for specific layers
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value, mem_cache = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            mem_cache=mem_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs + (mem_cache,)


LONGLLAMA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`LongLlamaConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGLLAMA_MEML_DOCSTRING = r"""
        mem_layers ([`int`], *optional*):
            Indices of layers to be augmented with memory, if None then parameters from config will be used
        mem_dtype (`str`, *optional*):
            Keys and values will be casted to this type for storage.

"""


@add_start_docstrings(
    "The bare LongLLaMA Model outputting raw hidden-states without any specific head on top.",
    LONGLLAMA_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->LongLlama
class LongLlamaPreTrainedModel(PreTrainedModel):
    config_class = LongLlamaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LongLlamaDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, LongLlamaModel):
            module.gradient_checkpointing = value


LONGLLAMA_COMMON_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`
            or memory cache is enabled):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 1 additional tensor of shape
            `(batch_size, 1, sequence_length, 1)`. For memory enriched layers it also contains content of memory cache.
            It is padded with empty tensors so when returned it alwyas has 6 elements.

            Contains pre-computed hidden-states (key and values in the self-attention blocks) 
            that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail. This is NOT supported in LongLlamaForCausalLM and LongLlamaForSequenceClassification
            due to the specific input processing.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGLLAMA_MODEL_INPUTS_DOCSTRING = r"""
        mem_caches (`tuple(LongLlamaMemCache)`, *optional*) 
            Memory caches for specified layers, None for others
"""

LONGLLAMA_ADD_INPUTS_DOCSTRING = r"""
        last_context_length (`int`, *optional*) 
            Useful for generation, specifies number of tokens that won't be loaded to memory and 
            will be left for generation cache
"""


def _prepare_pos_ids(past_key_values, batch_size, input_length, device):
    if past_key_values is not None:
        # take previous max pos_id + 1
        if past_key_values[0][2].shape[0] != batch_size:
            raise ValueError(
                f"first dimension of past_key_values should match batch size: {batch_size}"
                f"but got {past_key_values[0][2].shape[0]}"
            )
        next_pos = torch.max(past_key_values[0][2].view(batch_size, -1), dim=-1)[0] + 1
        next_pos = next_pos.view(batch_size, 1)
    else:
        next_pos = torch.zeros(batch_size, 1, device=device, dtype=torch.long)

    position_ids = torch.arange(0, input_length, dtype=torch.long, device=device).view(1, input_length)
    position_ids = position_ids + next_pos
    return position_ids


@add_start_docstrings(
    "The bare LongLLaMA Model outputting raw hidden-states without any specific head on top.",
    LONGLLAMA_START_DOCSTRING,
    LONGLLAMA_MEML_DOCSTRING,
)
# Modified transformers.models.llama.modeling_llama.LlamaModel
class LongLlamaModel(LongLlamaPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LongLlamaDecoderLayer`]

    Args:
        config: LlamaConfig
    """

    def __init__(self, config: LongLlamaConfig):
        super().__init__(config)
        self.mem_layers = config.mem_layers
        self.mem_config = LongLlamaMemConfig(
            positionals=config.mem_positionals,
            cache_dtype=getattr(torch, config.mem_dtype),
            attention_grouping=config.mem_attention_grouping,
        )
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)

        for mem_layer_id in self.mem_layers:
            if mem_layer_id < 0 or mem_layer_id >= config.num_hidden_layers:
                raise ValueError(
                    f"Memory layer ids should be between 0 and {config.num_hidden_layers}, got {mem_layer_id}"
                )

        layers = []
        for layer_id in range(config.num_hidden_layers):
            if layer_id in self.mem_layers:
                layer = LongLlamaDecoderLayer(config, mem_config=self.mem_config)
            else:
                layer = LongLlamaDecoderLayer(config, mem_config=None)
            layers.append(layer)

        self.layers = nn.ModuleList(layers)
        self.norm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    @add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_MODEL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        mem_caches: Optional[Tuple[Optional[LongLlamaMemCache]]] = None,
    ) -> Union[Tuple, LongLlamaModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[-2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = _prepare_pos_ids(past_key_values, batch_size, seq_length, device)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = ()
        next_mem_caches = ()
        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None
            mem_cache = mem_caches[idx] if mem_caches else None

            if mem_cache is not None and idx not in self.mem_layers:
                raise ValueError("Memory cache provided for a non-memory leayer")

            if (
                self.gradient_checkpointing
                and self.training
                and mem_cache is None
                and idx % self.config.gradient_checkpoint_every_ith == 0
            ):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None, mem_cache=None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    mem_cache=mem_cache,
                )

            new_mem_cache = layer_outputs[-1]
            layer_outputs = layer_outputs[:-1]
            next_mem_caches += (new_mem_cache,)

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
            else:
                next_decoder_cache += (None,)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None

        mem_cache_returned = False
        for mem_cache in next_mem_caches:
            if mem_cache is not None:
                mem_cache_returned = True
        next_mem_caches = next_mem_caches if mem_cache_returned else None

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, next_mem_caches]
                if v is not None
            )
        return LongLlamaModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            mem_caches=next_mem_caches,
        )


def _handle_output_of_past_key_values(outputs):
    # merges local caches and memory caches into one single tuple of past_key_values
    # in order to support generation
    batch_size = outputs.last_hidden_state.shape[0]
    if outputs.past_key_values is None and outputs.mem_caches is None:
        return None

    if outputs.past_key_values is None:
        out_past_key_values = (None,) * len(outputs.mem_caches)
    else:
        out_past_key_values = outputs.past_key_values

    if outputs.mem_caches is None:
        out_mem_caches = (None,) * len(outputs.past_key_values)
    else:
        out_mem_caches = outputs.mem_caches

    device = outputs.last_hidden_state.device
    past_key_values = ()
    for local_cache, mem_cache in zip(out_past_key_values, out_mem_caches):
        layer = ()
        if local_cache is not None:
            assert len(local_cache) == 3
            layer += local_cache
        else:
            layer += (torch.empty(batch_size, 0, 0, 0, device=device),) * 3

        if mem_cache is not None:
            layer += (mem_cache.keys, mem_cache.values, mem_cache.masks)
        else:
            layer += (torch.empty(batch_size, 0, 0, 0, device=device),) * 3

        assert len(layer) == 6

        past_key_values += (layer,)

    return past_key_values


def _split_past_key_values(past_key_values):
    # splits past_key_values to local cache and memory cache
    local_cache_preset = False
    mem_caches_present = False
    if past_key_values is not None:
        local_caches = ()
        mem_caches = ()
        for layer in past_key_values:
            if len(layer) != 6:
                raise ValueError(
                    "Expected elements of past_key_values to contain 6 elements."
                    "First 3 describing local cache and last 3 describing memory cache."
                    f"Instead got {len(layer)} elements"
                )
            else:
                lk, lv, li, memk, memv, memm = layer
                if lk.shape[-2] != 0:
                    local_cache_preset = True
                    local_caches += ((lk, lv, li),)
                else:
                    local_caches += (None,)

                if memk.shape[-2] != 0:
                    mem_caches_present = True
                    mem_caches += (LongLlamaMemCache(keys=memk, values=memv, masks=memm),)
                else:
                    mem_caches += (None,)

    local_caches = local_caches if local_cache_preset else None
    mem_caches = mem_caches if mem_caches_present else None

    return local_caches, mem_caches


def _handle_long_input(
    model,
    input_ids,
    attention_mask,
    position_ids,
    past_key_values,
    inputs_embeds,
    use_cache,
    output_attentions,
    output_hidden_states,
    return_dict,
    context_window_length,
    last_context_length,
):
    if output_attentions:
        logger.warning(
            f"Outputing attentions is not supported in LongLlamaForCausalLM and LongLlamaForSequenceClassification. "
            f"Attention of the last window will be returned"
        )

    past_key_values, mem_caches = _split_past_key_values(past_key_values)

    if past_key_values is not None and use_cache is False:
        raise ValueError("past_key_values it not None should imply use_cache == True")

    if past_key_values is not None:
        initial_past_key_values_length = past_key_values[0][0].shape[-2]
    else:
        initial_past_key_values_length = 0

    if input_ids is not None:
        batch_size, input_length = input_ids.shape
    else:
        batch_size, input_length, _ = inputs_embeds.shape

    if position_ids is None:
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        position_ids = _prepare_pos_ids(past_key_values, batch_size, input_length, device)

    if position_ids.shape != (batch_size, input_length):
        raise ValueError(f"Shape of position_ids [{position_ids}] should match [{batch_size, input_length}]")

    if attention_mask is not None:
        attention_mask = attention_mask[..., -(initial_past_key_values_length + input_length) :]
        if attention_mask is not None and (
            attention_mask.shape != (batch_size, initial_past_key_values_length + input_length)
        ):
            raise ValueError(
                "Attention mask should be provided for both the local cache and the input",
                f"Expected shape {(batch_size, initial_past_key_values_length + input_length)},"
                f"got {attention_mask.shape}.",
            )

    # First we load prefix to memory cache
    mem_input_length = max(input_length - last_context_length, 0)
    outputs_list = []
    attn_offset = initial_past_key_values_length
    if mem_input_length > 0:
        for i in range(0, mem_input_length, context_window_length):
            beg, end = i, min(mem_input_length, i + context_window_length)

            if attention_mask is not None:
                if past_key_values is not None:
                    local_cache_size = past_key_values[0][0].shape[-2]
                else:
                    local_cache_size = 0
                attn_length = attention_mask.shape[-1]
                attn_beg = beg + attn_offset - local_cache_size
                attn_end = end + attn_offset
                assert attn_end <= attn_length
                assert attn_beg >= 0 and attn_end > attn_beg

            # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn, mem_caches)
            outputs = model(
                input_ids=input_ids[..., beg:end] if input_ids is not None else None,
                attention_mask=attention_mask[..., attn_beg:attn_end] if attention_mask is not None else None,
                position_ids=position_ids[..., beg:end],
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds[..., beg:end, :] if inputs_embeds is not None else None,
                use_cache=False if past_key_values is None else use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=True,
                mem_caches=mem_caches,
            )
            if i > 0:
                if mem_caches is not None and past_key_values is None:
                    for mc_layer in mem_caches:
                        if mc_layer is not None:
                            del mc_layer.keys
                            del mc_layer.values
                            del mc_layer.masks

            mem_caches = outputs.mem_caches
            outputs.mem_caches = None
            past_key_values = outputs.past_key_values
            outputs.past_key_values = None
            outputs_list.append(outputs)

    remaining_input_length = input_length - mem_input_length
    beg = mem_input_length
    attn_length = remaining_input_length
    if past_key_values is not None:
        attn_length += past_key_values[0][0].shape[-2]
    attention_mask = attention_mask[..., -attn_length:] if attention_mask is not None else None

    outputs = model(
        input_ids=input_ids[..., beg:] if input_ids is not None else None,
        attention_mask=attention_mask,
        position_ids=position_ids[..., beg:],
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds[..., beg:, :] if inputs_embeds is not None else None,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=True,
        mem_caches=mem_caches,
    )

    outputs_list.append(outputs)

    past_key_values = _handle_output_of_past_key_values(outputs_list[-1])

    if output_hidden_states:
        hidden_states = ()
        for hd in zip(*[x.hidden_states for x in outputs_list]):
            hidden_states += (torch.cat(hd, dim=-2),)
    else:
        hidden_states = None

    outputs = BaseModelOutputWithPast(
        last_hidden_state=torch.concat([x.last_hidden_state for x in outputs_list], dim=-2),
        past_key_values=past_key_values,
        hidden_states=hidden_states,
        attentions=outputs_list[-1].attentions,
    )

    if not return_dict:
        outputs = tuple(
            v
            for v in [outputs.last_hidden_state, outputs.past_key_values, outputs.hidden_states, outputs.attentions]
            if v is not None
        )
    return outputs


# Modified transformers.models.llama.modeling_llama.LlamaForCausalLM
class LongLlamaForCausalLM(LongLlamaPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.context_window_length = config.max_position_embeddings

        self.model = LongLlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def _has_generation_cache(self, past_key_values):
        if past_key_values is not None:
            assert len(past_key_values[0]) == 6
            return past_key_values[0][0].shape[-2] != 0

        return False

    @add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_ADD_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        last_context_length: Optional[int] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        last_context_length = (
            last_context_length if last_context_length is not None else self.config.last_context_length
        )
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = _handle_long_input(
            model=self.model,
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            context_window_length=self.context_window_length,
            last_context_length=last_context_length,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        last_context_length=None,
        **kwargs,
    ):
        if self._has_generation_cache(past_key_values):
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill(position_ids < 0, 0)
            if self._has_generation_cache(past_key_values):
                position_ids = position_ids[:, -1].unsqueeze(-1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "last_context_length": last_context_length,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past


@add_start_docstrings(
    """
    The LongLLaMA Model transformer with a sequence classification head on top (linear layer).

    [`LongLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    LONGLLAMA_START_DOCSTRING,
    LONGLLAMA_MEML_DOCSTRING,
)
# Modified from transformers.models.llama.modeling_llama.LlamaForSequenceClassification
class LongLlamaForSequenceClassification(LongLlamaPreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.context_window_length = config.max_position_embeddings
        self.model = LongLlamaModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_ADD_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        last_context_length: Optional[int] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        last_context_length = (
            last_context_length if last_context_length is not None else self.config.last_context_length
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        transformer_outputs = _handle_long_input(
            model=self.model,
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            context_window_length=self.context_window_length,
            last_context_length=last_context_length,
        )

        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )