whisper-small-ur / README.md
tahaman's picture
End of training
f8df447 verified
metadata
language:
  - ur
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Ur - TahaMan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ur
          split: None
          args: 'config: ur, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 47.229551451187334

Whisper Small Ur - TahaMan

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9384
  • Wer: 47.2296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7769 5.2632 50 0.7217 62.9288
0.1271 10.5263 100 0.7884 62.4011
0.0149 15.7895 150 0.8567 48.0211
0.0039 21.0526 200 0.8914 47.2296
0.0024 26.3158 250 0.9138 47.2296
0.0018 31.5789 300 0.9278 47.2296
0.0016 36.8421 350 0.9357 46.9657
0.0014 42.1053 400 0.9384 47.2296

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1