NoteChat-BioBART / README.md
tanatapanun's picture
End of training
17adaf8 verified
metadata
base_model: checkpoint_global_step_200000
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: NoteChat-BioBART
    results: []

Visualize in Weights & Biases

NoteChat-BioBART

This model is a fine-tuned version of checkpoint_global_step_200000 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0020
  • Rouge1: 0.0816
  • Rouge2: 0.0373
  • Rougel: 0.0711
  • Rougelsum: 0.074
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.6113 1.0 3726 3.5345 0.0729 0.0245 0.0639 0.0667 20.0
3.2014 2.0 7452 3.1318 0.0701 0.0228 0.0619 0.0643 20.0
2.9394 3.0 11178 2.8865 0.0733 0.0255 0.0653 0.0678 20.0
2.7238 4.0 14904 2.6827 0.0759 0.0291 0.0673 0.0695 20.0
2.5805 5.0 18630 2.5151 0.0774 0.0311 0.0673 0.07 20.0
2.4169 6.0 22356 2.3876 0.0799 0.0329 0.0686 0.0717 20.0
2.2721 7.0 26082 2.2933 0.081 0.0345 0.0706 0.0734 20.0
2.207 8.0 29808 2.2572 0.0812 0.035 0.071 0.0737 20.0
2.1144 9.0 33534 2.1707 0.081 0.0352 0.0706 0.0735 20.0
2.0559 10.0 37260 2.1287 0.0814 0.0351 0.0694 0.0728 20.0
1.9991 11.0 40986 2.0978 0.081 0.0356 0.0705 0.0734 20.0
1.9552 12.0 44712 2.0716 0.0812 0.0362 0.0709 0.0737 20.0
1.9006 13.0 48438 2.0657 0.081 0.0364 0.0711 0.0739 20.0
1.8592 14.0 52164 2.0483 0.0812 0.0362 0.0704 0.0734 20.0
1.8453 15.0 55890 2.0314 0.0815 0.0375 0.0716 0.0744 20.0
1.8113 16.0 59616 2.0129 0.081 0.0367 0.0708 0.0735 20.0
1.7864 17.0 63342 2.0055 0.0815 0.0371 0.0711 0.074 20.0
1.781 18.0 67068 2.0136 0.0809 0.0368 0.0708 0.0737 20.0
1.7774 19.0 70794 2.0024 0.0815 0.0372 0.071 0.0739 20.0
1.7345 20.0 74520 2.0020 0.0816 0.0373 0.0711 0.074 20.0

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1