File size: 2,509 Bytes
555c5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: GanjinZero/biobart-v2-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: fine-tuned-BioBART-2048-inputs-10-epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-BioBART-2048-inputs-10-epochs

This model is a fine-tuned version of [GanjinZero/biobart-v2-base](https://huggingface.co/GanjinZero/biobart-v2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7099
- Rouge1: 0.2904
- Rouge2: 0.1173
- Rougel: 0.2687
- Rougelsum: 0.2692
- Gen Len: 14.66

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 151  | 0.7536          | 0.2059 | 0.0784 | 0.1881 | 0.1881    | 13.31   |
| No log        | 2.0   | 302  | 0.7161          | 0.2569 | 0.0831 | 0.2279 | 0.2278    | 13.88   |
| No log        | 3.0   | 453  | 0.7013          | 0.2322 | 0.0818 | 0.2055 | 0.2059    | 14.57   |
| 0.7283        | 4.0   | 604  | 0.6976          | 0.2835 | 0.1095 | 0.2585 | 0.2584    | 14.34   |
| 0.7283        | 5.0   | 755  | 0.7012          | 0.2749 | 0.0921 | 0.2521 | 0.2528    | 14.35   |
| 0.7283        | 6.0   | 906  | 0.6963          | 0.2957 | 0.1073 | 0.2688 | 0.269     | 14.97   |
| 0.5246        | 7.0   | 1057 | 0.7043          | 0.2824 | 0.1067 | 0.257  | 0.257     | 14.68   |
| 0.5246        | 8.0   | 1208 | 0.7043          | 0.292  | 0.1158 | 0.2706 | 0.2722    | 14.16   |
| 0.5246        | 9.0   | 1359 | 0.7080          | 0.2849 | 0.1087 | 0.2603 | 0.2615    | 14.69   |
| 0.4414        | 10.0  | 1510 | 0.7099          | 0.2904 | 0.1173 | 0.2687 | 0.2692    | 14.66   |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.12.1+cu113
- Datasets 2.15.0
- Tokenizers 0.15.0