fine-tuned-BioBART-2048-inputs-10-epochs

This model is a fine-tuned version of GanjinZero/biobart-v2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7099
  • Rouge1: 0.2904
  • Rouge2: 0.1173
  • Rougel: 0.2687
  • Rougelsum: 0.2692
  • Gen Len: 14.66

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 151 0.7536 0.2059 0.0784 0.1881 0.1881 13.31
No log 2.0 302 0.7161 0.2569 0.0831 0.2279 0.2278 13.88
No log 3.0 453 0.7013 0.2322 0.0818 0.2055 0.2059 14.57
0.7283 4.0 604 0.6976 0.2835 0.1095 0.2585 0.2584 14.34
0.7283 5.0 755 0.7012 0.2749 0.0921 0.2521 0.2528 14.35
0.7283 6.0 906 0.6963 0.2957 0.1073 0.2688 0.269 14.97
0.5246 7.0 1057 0.7043 0.2824 0.1067 0.257 0.257 14.68
0.5246 8.0 1208 0.7043 0.292 0.1158 0.2706 0.2722 14.16
0.5246 9.0 1359 0.7080 0.2849 0.1087 0.2603 0.2615 14.69
0.4414 10.0 1510 0.7099 0.2904 0.1173 0.2687 0.2692 14.66

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
15
Safetensors
Model size
166M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tanatapanun/fine-tuned-BioBART-2048-inputs-10-epochs

Finetuned
(13)
this model