|
---
|
|
license: apache-2.0
|
|
pipeline_tag: text-generation
|
|
library_name: transformers
|
|
language: [
|
|
'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el',
|
|
'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he',
|
|
'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko',
|
|
'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my',
|
|
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si',
|
|
'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn',
|
|
'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu',
|
|
]
|
|
datasets: [
|
|
'xu-song/cc100-samples',
|
|
'jordiclive/wikipedia-summary-dataset',
|
|
'JeanKaddour/minipile',
|
|
'badrex/llm-emoji-dataset',
|
|
'fblgit/simple-math',
|
|
'Gusarich/math-expressions-1m',
|
|
'AtlasUnified/atlas-math-sets',
|
|
'gair-prox/open-web-math-pro',
|
|
'bigcode/the-stack-smol-xs',
|
|
'rombodawg/code_bagel',
|
|
'AtlasUnified/Atlas-Reasoning',
|
|
'thesven/gsm8k-reasoning',
|
|
'AlgorithmicResearchGroup/math_reasoning_autoformalization_track',
|
|
'KingNish/reasoning-base-20k',
|
|
'SkunkworksAI/reasoning-0.01',
|
|
'Magpie-Align/Magpie-Reasoning-150K',
|
|
]
|
|
tags:
|
|
- litgpt
|
|
- litdata
|
|
---
|
|
|
|
# tangled-llama-b-128k-base-v0.1
|
|
|
|
![logo](./misc/logo.png)
|
|
|
|
A pretrained language model based on the Llama model with about **62.9M** parameters. This model has been trained on **10.6B** (`10,630,121,844`) tokens from more than **31.3M** (`31,383,840`) dataset rows.
|
|
|
|
This model **isn't** designed for immediate use but rather for Continued Pretraining and Finetuning on a downstream task. While it can handle a context length of up to **128K** (`131,072`) tokens, it was pretrained with sequences of **2K** (`2048`) tokens.
|
|
|
|
The objective is to streamline the cognitive or reasoning core, eliminating any redundant knowledge from the model.
|
|
|
|
[loss, val_loss]()
|
|
|
|
[val_ppl]()
|
|
|
|
[epoch]()
|
|
|
|
[learning_rate]()
|
|
|
|
## lm-evaluation-harness
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-quick/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-leaderboard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'bbh_zeroshot,bbh_fewshot,bbh_cot_fewshot,bbh_cot_zeroshot' --out_dir 'evaluate-bigbenchhard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'mmlu,mmlu_pro' --out_dir 'evaluate-mmlu/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'arc_challenge,boolq,gpqa,hellaswag,openbookqa,piqa,truthfulqa_mc2,winogrande' --out_dir 'evaluate-reasoning/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'mmlu_multilingual,mgsm' --out_dir 'evaluate-multilinguals/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'gsm8k,mathqa' --out_dir 'evaluate-math/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|
|
```bash
|
|
litgpt evaluate --tasks 'wikitext,qasper' --out_dir 'evaluate-long/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
|
```
|
|
|