tangled-llama-b-128k-base-v0.1 / scripts /prepare_pretrain_dataset.py
mtasic85's picture
pretrain model
81565a0
raw
history blame
7.54 kB
from typing import Optional, Union
from functools import partial
import numpy as np
from datasets import load_dataset
from litdata import optimize, TokensLoader
from litgpt.tokenizer import Tokenizer
def batch_dict_iterator(path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
format: Optional[str]=None):
assert isinstance(format, str) or callable(format)
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
if callable(format):
for row in dataset:
text = format(row)
yield text
else:
for row in dataset:
text = format.format(**row)
yield text
def batch_iterator(dataset_config: Union[list, dict]):
if isinstance(dataset_config, dict):
for text in batch_dict_iterator(**dataset_config):
yield text
elif isinstance(dataset_config, list):
for dc in dataset_config:
for text in batch_dict_iterator(**dc):
yield text
else:
raise ValueError('')
def tokenize_fn(dataset_config: Union[dict, list], tokenizer: Optional[Tokenizer]=None):
assert isinstance(dataset_config, (dict, list))
for text in batch_iterator(dataset_config):
text_ids = tokenizer.encode(text, bos=False, eos=True)
yield text_ids
datasets_configs = [
#
# multilingual text
#
[
# 193 MB, 1,141,967
{'path': 'xu-song/cc100-samples', 'name': name, 'split': 'train', 'format': lambda n: n['text']}
for name in [
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
'zh-Hans', 'zh-Hant', 'zu',
]
],
#
# general knowledge
#
# 2.89 GB, 430,000, English September of 2017
*[
{'path': 'jordiclive/wikipedia-summary-dataset', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['summary']}
for i in range(0, 100, 20)
],
# 3.18 GB, 1,010,500
*[
{'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
for i in range(0, 100, 20)
],
#
# misc
#
{'path': 'badrex/llm-emoji-dataset', 'format': '{character} {unicode} {short description} {tags} {LLM description}'}, # 472 KB, 5,034
#
# math
#
# 12.2 MB, 500,000
[
{'path': 'fblgit/simple-math', 'revision': 'refs/convert/parquet', 'split': f'train[{i}%:{i + 20}%]+test', 'format': '{instruction} = {output}'}
for i in range(0, 100, 20)
],
# 125 MB, 1,000,000
[
{'path': 'Gusarich/math-expressions-1m', 'revision': 'refs/convert/parquet', 'split': f'train[{i}%:{i + 20}%]', 'format': '{expression} = {result}'}
for i in range(0, 100, 20)
],
# 3.49 GB, 22,259,474
[
{'path': 'AtlasUnified/atlas-math-sets', 'split': f'train[{i}%:{i + 20}%]+validation+test', 'format': '{instruction} . {output}'}
for i in range(0, 100, 20)
],
# 9.05 GB, 2,583,257
[
{'path': 'gair-prox/open-web-math-pro', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
for i in range(0, 100, 20)
],
#
# code
#
[
# 102 MB, 8,700
{'path': 'bigcode/the-stack-smol-xs', 'name': name, 'format': lambda n: n['content']}
for name in [
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
'yacc', 'zig',
]
],
# 2.3 GB, 2,218,460
[
{'path': 'rombodawg/code_bagel', 'split': f'train[{i}%:{i + 20}%]', 'format': '{input}\n{output}'}
for i in range(0, 100, 20)
],
#
# general reasoning
#
{'path': 'AtlasUnified/Atlas-Reasoning', 'data_files': 'reasoning.csv', 'format': '{Prompt} {Step-by-step reasoning} {Solution}'}, # 10.8 MB, 15,770
#
# math reasoning
#
[
{'path': 'thesven/gsm8k-reasoning', 'format': '{question} {generation} {answer} {short_answer}'}, # 8.99 MB, 6,914
{'path': 'AlgorithmicResearchGroup/math_reasoning_autoformalization_track', 'format': '{informal_statement} {informal_proof} {formal_proof}'}, # 1.79 MB, 3,963
{'path': 'KingNish/reasoning-base-20k', 'format': '{user} {reasoning} {assistant}'}, # 307 MB, 19,944
],
#
# code reasoning
#
[
{'path': 'SkunkworksAI/reasoning-0.01', 'format': '{instruction} {reasoning} {output}'}, # 56.4 MB, 29,857
{'path': 'Magpie-Align/Magpie-Reasoning-150K', 'format': '{instruction} {response}'}, # 368 MB, 150,000
],
]
outputs = optimize(
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
inputs=datasets_configs,
output_dir='../pretrain-data/',
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
chunk_size=(2049 * 8012),
num_workers=32,
reorder_files=False,
)
#
# total number of chunks
#
from litdata import StreamingDataset, StreamingDataLoader, TokensLoader
dataset = StreamingDataset(
input_dir='../pretrain-data/',
item_loader=TokensLoader(block_size=2049),
)
print(len(dataset))