subcate-ts

This model is a fine-tuned version of tangminhanh/cate-ts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0130
  • Accuracy: 0.3377
  • F1: 0.4963
  • Precision: 0.9460
  • Recall: 0.3364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8242 0.9987 188 0.2821 0.0 0.0081 0.0046 0.0321
0.1451 1.9973 376 0.0313 0.0 0.0 0.0 0.0
0.0298 2.9960 564 0.0231 0.0 0.0 0.0 0.0
0.024 4.0 753 0.0206 0.0 0.0 0.0 0.0
0.0212 4.9987 941 0.0181 0.1261 0.2233 0.9922 0.1258
0.0187 5.9973 1129 0.0162 0.2292 0.3696 0.9664 0.2285
0.0169 6.9960 1317 0.0147 0.3081 0.4657 0.9646 0.3070
0.0157 8.0 1506 0.0137 0.3184 0.4763 0.9551 0.3172
0.0151 8.9987 1694 0.0132 0.3310 0.4894 0.9486 0.3298
0.0145 9.9867 1880 0.0130 0.3377 0.4963 0.9460 0.3364

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tangminhanh/subcate-ts

Finetuned
(1)
this model