|
--- |
|
library_name: transformers |
|
license: llama3.2 |
|
base_model: tanliboy/llama-3.2-3b |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
- alignment-handbook |
|
- generated_from_trainer |
|
datasets: |
|
- tanliboy/OpenHermes-2.5-reformat |
|
model-index: |
|
- name: llama-3.2-3b-sft |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama-3.2-3b-sft |
|
|
|
This model is a fine-tuned version of [tanliboy/llama-3.2-3b](https://huggingface.co/tanliboy/llama-3.2-3b) on the tanliboy/OpenHermes-2.5-reformat dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7216 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.8741 | 0.0448 | 100 | 0.8600 | |
|
| 0.8038 | 0.0897 | 200 | 0.8095 | |
|
| 0.7937 | 0.1345 | 300 | 0.7789 | |
|
| 0.7712 | 0.1794 | 400 | 0.7644 | |
|
| 0.7393 | 0.2242 | 500 | 0.7565 | |
|
| 0.7458 | 0.2691 | 600 | 0.7506 | |
|
| 0.7694 | 0.3139 | 700 | 0.7458 | |
|
| 0.713 | 0.3587 | 800 | 0.7422 | |
|
| 0.7347 | 0.4036 | 900 | 0.7387 | |
|
| 0.7243 | 0.4484 | 1000 | 0.7356 | |
|
| 0.7161 | 0.4933 | 1100 | 0.7331 | |
|
| 0.7247 | 0.5381 | 1200 | 0.7308 | |
|
| 0.7477 | 0.5830 | 1300 | 0.7288 | |
|
| 0.7429 | 0.6278 | 1400 | 0.7273 | |
|
| 0.7317 | 0.6726 | 1500 | 0.7256 | |
|
| 0.7226 | 0.7175 | 1600 | 0.7243 | |
|
| 0.695 | 0.7623 | 1700 | 0.7234 | |
|
| 0.7167 | 0.8072 | 1800 | 0.7226 | |
|
| 0.686 | 0.8520 | 1900 | 0.7221 | |
|
| 0.7214 | 0.8969 | 2000 | 0.7218 | |
|
| 0.7358 | 0.9417 | 2100 | 0.7216 | |
|
| 0.7259 | 0.9865 | 2200 | 0.7216 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|